基于YOLOv8深度学习的45种交通标志智能检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:交通标志智能检测与识别系统对于提升道路安全、改善交通管理和推动自动驾驶技术的发展都有至关重要的作用。本文基于YOLOv8深度学习框架,通过9738张图片,训练了一个进行交通标志智能检测与识别的目标检测模型,可检测45种不同交通标志。并基于此模型开发了一款带UI界面的交通标志智能检测与识别系统,可用于实时检测场景中的不同交通标志,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

交通标志智能检测与识别系统对于提升道路安全、改善交通管理和推动自动驾驶技术的发展都有至关重要的作用。

首先,对于驾驶员来说,即便在恶劣天气或光线不足的情况下,这个系统都能够准确识别交通标志,及时提供必要的交通信息,从而大大降低交通事故的发生概率。
其次,对于城市交通管理中心,该系统可以实时监控交通标志的状态,快速发现被损坏或被遮挡的标志,确保道路信息的畅通无阻。在自动驾驶领域,一个准确的交通标志识别系统是自动驾驶汽车感知环境的关键,它能够帮助车辆理解和遵守交通规则,使自动驾驶更加安全可靠。
此外,交通标志识别技术还可以应用于智能交通系统(ITS)中,以优化交通流量及减少拥堵;导航软件可以利用识别信息提供更加精准的路线指引;驾驶辅助系统则能利用这一技术提醒驾驶者即将到来的交通条件变化,增强驾驶体验。
总之,随着交通网络的日益复杂和车流量的持续增长,交通标志智能检测与识别的重要性正在不断上升,它的应用对于创建更智能、更安全的道路交通环境至关重要。

博主通过搜集不同种类的交通标志的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的交通标志智能检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行45种交通标志的检测与识别,具体交通标志名称见数据集介绍部分;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的数据集为tt100K交通标志数据集,选取其中每类样本数大于100的交通标志图片进行模型训练,并将原始标签转换为yolo格式标签。最终一共包含9738张图片,其中训练集包含6793张图片验证集包含1949张图片测试集包含996张图片.部分图像及标注如下图所示。最终共有45种交通标志参与模型训练,中英文名称对照如下:
模型训练时,使用的名称对照表如下:
在这里插入图片描述
其中训练的45个交通标志类别中文名称为:

[‘限速80’, ‘禁止自行车同行’, ‘禁止掉头’, ‘限重55吨’, ‘限速60’, ‘人行横道’, ‘禁止鸣笛’, ‘非机动车行进标志’, ‘禁止左转’, ‘减速让行’, ‘最低限速80’, ‘限高4米’, ‘机动车行驶’, ‘限速70’, ‘禁止驶入’, ‘限高4.5米’, ‘禁止摩托车通行’, ‘禁止大型客车通行’, ‘禁止人力车通行’, ‘十字交叉’, ‘机动车行进标志’, ‘限速30’, ‘禁止机动车通行’, ‘禁止长时间停车’, ‘注意儿童’, ‘禁止货车通行’, ‘禁止某两种车辆通行’, ‘解除限制速度’, ‘限速20’, ‘限重30吨’, ‘限速40’, ‘非机动车行驶’, ‘限速120’, ‘施工’, ‘限高5米’, ‘最低限速60’, ‘注意行人’, ‘限速100’, ‘注意合流’, ‘最低限速100’, ‘禁止右转’, ‘限重20吨’, ‘靠右侧道路行驶’, ‘禁止危险品车辆通行’, ‘限速50’]

在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入TrafficSignData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\TrafficSignDetection\datasets\TrafficSignData\images\train
val: E:\MyCVProgram\TrafficSignDetection\datasets\TrafficSignData\images\valnc: 45
names: ['pl80', 'p6', 'p5', 'pm55', 'pl60', 'ip', 'p11', 'i2r', 'p23', 'pg', 'il80', 'ph4', 'i4', 'pl70', 'pne', 'ph4.5', 'p12', 'p3', 'pl5', 'w13', 'i4l', 'pl30', 'p10', 'pn', 'w55', 'p26', 'p13', 'pr40', 'pl20', 'pm30', 'pl40', 'i2', 'pl120', 'w32', 'ph5', 'il60', 'w57', 'pl100', 'w59', 'il100', 'p19', 'pm20', 'i5', 'p27', 'pl50']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/TrafficSignData/data.yaml', epochs=350, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述
我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型45类目标检测的mAP@0.5平均值为0.796,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/4840.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款交通标志智能检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的45种交通标志智能检测与识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2660552.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

cnPuTTY 0.80.0.1—PuTTY Release 0.80中文版本简单说明~~

2023-12-18 官方发布了PuTTY 0.80本次发布主要是针对Terrapin攻击(CVE-2023-48795)的修改发布。 更多详细的内容请查看PuTTY Change Log。 有关Terrapin攻击可用简单参考:警告!!!Terrapin攻击(CVE-2023-48795)~~~ 为了缓解此漏洞…

mysql 与 支持语言的连接驱动 jdbc connector JAR 包

有位网友问我有没有 mysql jdbc驱动 ,我刚开始一脸懵逼,后来明白过来,在网上找了几篇文章看看了解了解,得出如下解决办法: Mysql jdbc 下载: 网址: MySQL :: Download Connector/J 步骤1 &a…

AWS SSM中切换AWS不同的profile

问题 在自己的开发笔记本上面,通过AWS SSM方式访问EC2服务,只需要通过简单的命令就可以访问EC2了,如下: aws ssm start-session --target i-xxxx12350这个命令就是利用aws命令行工具中ssm提供的会话管理能力访问ec2服务&#xf…

Kafka学习笔记1(千峰教育)

Kafka学习笔记1(千峰教育) 一、为什么使用消息队列1.使用同步的通信方式来解决多个服务之间的通信2.使用异步的通信方式 二、消息队列的流派1.有broker2.无broker 三、Kafka的基本知识1.Kafk2a的安装2.Kafka中的一些基本概念3.创建topic4.发送消息5.消费…

【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现

【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现 1 题目 赛题 B DNA 存储中的序列聚类与比对 近年来,随着新互联网设备的大量涌入和对其服务需求的指数级增长,越来越多的数据信息被产生与收集。预计到 2021 年&#xf…

网络攻防中应该掌握的进阶工具udp2raw,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS

网络攻防中应该掌握的进阶工具udp2raw,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS。 udp2raw tunnel,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS,或在UDP不稳定的环境下提升稳定性。可以有效防止在使用kcptun或者finalspeed的…

Unreal Engine游戏引擎的优势

在现在这个繁荣的游戏开发行业中,选择合适的游戏引擎是非常重要的。其中,Unreal Engine作为一款功能强大的游戏引擎,在业界广受赞誉。那Unreal Engine游戏引擎究竟有哪些优势,带大家简单的了解一下。 图形渲染技术 Unreal Engin…

gnu工程的编译 - 以libiconv为例

文章目录 gnu工程的编译 - 以libiconv为例概述gnu官方源码包的发布版从官方的代码库直接迁出的git版源码如果安装了360, 需要添加开发相关的目录到信任区生成 configrue 的方法备注END gnu工程的编译 - 以libiconv为例 概述 gnu工程的下载分2种: gnu官方源码包的发布版 这种…

中文版大模型 Token 成本计算器

分享一个轻量的小工具,10MB 左右,能够帮助你直观的了解大模型 Token 的计算方法。 希望能够帮助到想了解或者正在规划模型 API 使用成本的你。 写在前面 之所以折腾这个小工具,是因为有朋友和我提问,大模型 API 的 Token 到底是…

托管在亚马逊云科技的向量数据库MyScale如何借助AWS基础设施构建稳定高效的云数据库

MyScale是一款完全托管于亚马逊云科技,支持SQL的高效向量数据库。MyScale的优势在于,它在提供与专用向量数据库相匹敌甚至优于的性能的同时,还支持完整的SQL语法。以下内容,将阐述MyScale是如何借助亚马逊云科技的基础设施&#x…

手机/平板实现电脑第三屏-记录极简

软件: 手机 平板 : moonlight 电脑: 1 KtzeAbyss/Easy-Virtual-Display 2 Parsec Virtual Display Driver https://builds.parsec.app/vdd/parsec-vdd-0.38.0.0.exe 3 LizardByte/Sunshine: Self-hosted game stream host for Moonlight. (gith…

第十四章 Sentinel实现熔断与限流

Sentinel实现熔断与限流 gitee:springcloud_study: springcloud:服务集群、注册中心、配置中心(热更新)、服务网关(校验、路由、负载均衡)、分布式缓存、分布式搜索、消息队列(异步通信&#x…

OpenCV-Python(21):轮廓特征及周长、面积凸包检测和形状近似

2. 轮廓特征 轮廓特征是指由轮廓形状和结构衍生出来的一些特征参数。这些特征参数可以用于图像识别、目标检测和形状分析等应用中。常见的轮廓特征包括: 面积:轮廓所包围的区域的面积。周长:轮廓的周长,即轮廓线的长度。弧长&…

Linux 线程概念

文章目录 前言线程的概念线程的操作操作的原理补充与说明 前言 ① 函数的具体说明被放在补充与说明部分 ② 只说些基础概念和函数使用 线程的概念 网络回答:Linux 线程是指在 Linux 操作系统中创建和管理的轻量级执行单元。线程是进程的一部分,与进程…

Web漏洞—安全评估基础知识

一个安全评估的过程,可以简单地分为4个阶段:资产等级划分、威胁分析、风险分析、确认解决方案。 一般来说,按照这个过程来实施安全评估,在结果上不会出现较大的问题。这个实施的过程是层层递进的,前后之间有因果关系。 资产等级划分 资产等级…

【CSS3】第4章 CSS3选择器

学习目标 熟悉属性选择器的用法,了解不同属性选择器的功能。 掌握关系选择器的用法,能够使用关系选择器选取父标签中嵌套的子标签。 掌握结构化伪类选择器的用法,能够使用不同功能的结构化伪类选择器精准控制标签样式。 掌握状态化伪类选择…

HCIA-Datacom题库(自己整理分类的)——OSPF协议多选

ospf的hello报文功能是 邻居发现 同步路由器的LSDB 更新LSA信息 维持邻居关系 下列关于OSPF区域描述正确的是 在配置OSPF区域正确必须给路由器的loopback接配置IP地址 所有的网络都应在区域0中宣告 骨干区域的编号不能为2 区域的编号范围是从0.0.0.0到255.255.255.255…

边缘计算网关:在智慧储能系统中做好储能通信管家

背景 目前储能系统主要由储能单元和监控与调度管理单元组成,储能单元包含储能电池组(BA)、电池管理系统(BMS)、储能变流器(PCS)等;监控与调度管理单元包括中央控制系统(MGCC)、能量管理系统(EMS)等。 2021年8月,国家发改委发布《电化学储能…

新版ONENET的物联网环境调节系统(esp32+onenet+微信小程序)

新版ONENET的物联网环境调节系统(esp32onenet微信小程序) 好久没用onenet突然发现它大更新了,现在都是使用新版的物联网开放平台,只有老用户还有老版的多协议接入,新用户是没有的,所以我顺便更新一下新的开…

大厂前端面试题总结(百度、字节跳动、腾讯、小米.....),附上热乎面试经验!

先简单介绍下自己,我“平平无奇小天才”一枚,毕业于南方普通985普通学生,有幸去百度、字节面试,感觉大公司就是不一样,印象最深的是字节,所以有必要总结一下面试经验,以及面试中遇到的一些问题&…