基于深度学习的高精度家禽猪检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度家禽猪检测识别系统可用于日常生活中或野外来检测与定位家禽猪目标,利用深度学习算法可实现图片、视频、摄像头等方式的家禽猪目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括家禽猪训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本家禽猪检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度家禽猪识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的家禽猪数据集手动标注了家禽猪这一个类别,数据集总计1448张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的家禽猪检测识别数据集包含训练集1154张图片,验证集294张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的家禽猪数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对家禽猪数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/254121.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

智能管理PoE交换机

在这个万物互联的时代,数据与数据之间的相互传输交流,显得尤为重要。那么要怎样才能使计算机与传统的物联设备相连接呢?这时,串口服务器这一媒介的作用就凸显出来了。那么,你知道什么是串口服务器吗?串口服…

chatgpt赋能python:Python中构造函数的名称

Python中构造函数的名称 作为一名有10年Python编程经验的工程师,我深知Python语言中构造函数的重要性。在本文中,我将着重介绍Python中构造函数的名称,并阐述其在Python编程中的作用。 什么是构造函数? 构造函数是一种特殊类型…

C++ stack容器介绍

🤔stack容器介绍: 📖 stack是一种数据结构,也可以被称为堆栈。它是一个容器,只允许在最顶层进行插入和删除,并且只能访问最后一个插入的元素。这个元素称为栈顶。所有新插入的元素都被放置在栈顶上面&#…

Mysql source命令报错

Mysql source命令报错 情况一:目录包含中文 放到没有中文的路径再执行 情况二:不小心加了分号 mysql会将分号当做文件名的一部分 固然报错 情况三:没有选择数据库 使用 use加数据库名 选择数据库后再执行 执行成功画面

Linux中的source命令

Linux中的source命令 1、source命令是什么? source命令也称为“点命令”,也就是一个点符号(.),是bash的内部命令。 注意:该命令通常用命令“.”来替代 2、source命令 功能(能干什么&#xff0…

qsort函数排序举例

使用qsort函数快速排序应用举例 这篇博客是用qsort函数来快速排列float型数据,分别按照年龄(int型)、姓名(char型)排列结构体。看懂就看懂,看不懂我也不想解释了。 简略解释一下qsort函数: v…

C语言qsort函数详解

目录 一、qsort函数的使用 二、qsort函数的模拟 一、qsort函数的使用 快排函数qsort是C的库函数&#xff0c;它可以对输入的任何类型的数组排序&#xff0c;通过该函数的函数声明我们可以看出它的使用方法&#xff1a; 举个栗子&#xff1a; #include<stdio.h> #inclu…

C语言 - qsort函数详解

文章目录 一.qsort函数简介1.qsort函数是C标准库<stdlib.h>库中的函数&#xff0c;使用时引入#include <stdlib.h>。**2.它的函数原型是 void qsort(void* base, size_t num, size_t width, int (*compare)(const void*, const void*))3.这些参数都是什么意思&…

qsort函数详解

上篇文章&#xff0c;笔者讲解了冒泡排序的方法&#xff0c;原文链接为&#xff1a;一个典列来带领大家了解冒泡排序思想_念君思宁的博客-CSDN博客&#xff0c;有意者请参考一下&#xff01; 最近笔者又浅学关于qsort函数的排序方法&#xff01;下面且听笔者一一道来&#xff…

C语言函数——qsort函数的使用

目录 一、qsort函数&#xff1a; 1、定义&#xff1a; 2、参数&#xff1a; &#xff08;1&#xff09;.基础 &#xff08;2&#xff09;.数字 &#xff08;3&#xff09;.大小 &#xff08;4&#xff09;.比较 二、总代码&#xff1a; 1、整型比较&#xff1a; 2、浮…

利用qsort函数快速排序

一.qsort函数的类型及参数 void qsort(void *base,size_t num,size_t width,int (*compare)(const void* elem1),const void* elem2)1.第一个参数base&#xff1a;待排序数组的首元素的地址&#xff0c;数据类型为void*。 2.第二个参数 num&#xff1a;待排序数组的元素个数&…

详解c语言中的qsort函数(有图)

目录 目录 一、qsort函数是什么 1、自定义冒泡函数时遇到的问题 2、qsort函数的作用 &#xff08;1&#xff09;int整形数组排序&#xff08;2&#xff09;浮点型数组排序&#xff08;3&#xff09;字符数组排序 &#xff08;4&#xff09;结构体排序 二、qsort函数…

qsort函数详情

文章目录 一.qsort函数的使用1.qsort函数定义&#xff1a;2.使用 二.qsort函数的模拟实现 一.qsort函数的使用 1.qsort函数定义&#xff1a; qsort函数实现的功能为&#xff1a;对一组数据进行排序。 表现形式&#xff1a; void qsort(void *base, size_t num, size_t size,…

qsort函数

目录 1.什么是qsort函数2.实现一个qsort函数3.用qsort函数排序一个结构体4.模仿qsort的功能实现一个通用的冒泡排序 1.什么是qsort函数 我们以前学习过的一些排序算法&#xff0c;如冒泡、希尔、快排等等&#xff0c;它们速度有快有满&#xff0c;但是这些排序都只能排序一种类…

qsort函数的使用方法

前言 qsort函数是C语言库函数内给我们提供的一个可以实现排序的函数 它不仅可以排序数组&#xff0c;还可以排序字符串&#xff0c;以及结构体类型 下面是qsort函数的使用方法以及注意事项 一、了解qsort函数 根据MSDN提供的参数 由此我们可以知道 使用qsort函数需要引用头文…

简单介绍一下qsort函数

目录 一.回调函数 二.qsort函数 三.void*指针 四.用qsort函数进行升序排序 1.整形数组排序 2.结构体数组排序 3.字符数组排序 五.使用冒泡排序模拟实现qsort函数 一.回调函数 回调函数就是一个通过函数指针调用的函数。如果你把函数的指针&#xff08;地址&#xff09;…

C语言qsort函数的使用详解

文章目录 一、qsort函数简介1.函数原型2.参数含义3.比较函数详解 二、比较函数使用案例1.整型数组2.字符数组3.double型数组4.字符串1.按字符串首字母进行排序2.按字符串长度进行排序3.按字典进行排序 5.结构体 三、qsort函数完整使用案例1.整型数组2.字符数组3.double型数组4.…

qsort函数用法 + 模拟实现qsort函数

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前是C语言学习者 ✈️专栏&#xff1a;【C/C】算法 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞…

C语言qsort函数用法

qsort函数简介 排序方法有很多种&#xff1a;选择排序&#xff0c;冒泡排序&#xff0c;归并排序&#xff0c;快速排序等。 看名字都知道快速排序是目前公认的一种比较好的排序算法。因为他速度很快&#xff0c;所以系统也在库里实现这个算法&#xff0c;便于我们的使用。 这就…

qsort函数讲解

qsort函数的作用是将所有数据排序&#xff0c;那么它和普通的冒泡排序或者选择排序有什么区别呢&#xff1f;它不仅仅可以排序数组中的数字&#xff0c;还可以排序结构体。当然升序和降序它都支持&#xff0c;不过输入参数的顺序会有所不同&#xff0c;下面我们来详细讲解一下这…