目标检测算法——YOLOv5/YOLOv7改进结合轻量型Ghost模块

>>>深度学习Tricks,第一时间送达<<<


论文题目:《GhostNet:More Features from Cheap Operations》
论文地址:  https://arxiv.org/pdf/1911.11907v1.pdf

由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络(CNNs)是很困难的。特征图中的冗余性是这些成功cnn的一个重要特征,但在神经结构设计中很少被研究。本文提出了一种新的ghost模块,从廉价的操作中生成更多的特征映射。基于一组内在特征映射,应用一系列成本低廉的线性变换来生成许多幽灵特征映射,可以充分揭示内在特征背后的信息。提出的ghost模块可以作为即插即用组件来升级现有的卷积神经网络。 Ghost bottlenecks被设计为堆栈的ghost模块,可以很容易地建立轻量级的GhostNet。特征层中充足或者冗余的信息总是可以保证对输入数据的全面理解,而且特征层之间有很多是相似的,这些相似的特征层就像彼此的ghost (幻象)。考虑到特征层中冗余的信息可能是一个成功模型的重要组成部分,论文在设计轻量化模型时并没有试图去除这些冗余,而是用更低成本的计算量来获取它们。

由于嵌入式设备有限的内存和计算资源,在其上部署神经网络很困难,一般需要降低神经网络的大小和计算资源的占用。若将轻量型的Ghost模块与YOLOv5算法相结合,可大幅降低网络参数量,在满足模型轻量化的同时,还可以加快原始网络推理速度。

1.Ghost Module网络结构图

 2.Ghost Module相应代码

class GhostModule(nn.Module):def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):super(GhostModule, self).__init__()self.oup = oupinit_channels = math.ceil(oup / ratio)new_channels = init_channels*(ratio-1)self.primary_conv = nn.Sequential(nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),nn.BatchNorm2d(init_channels),nn.ReLU(inplace=True) if relu else nn.Sequential(),)self.cheap_operation = nn.Sequential(nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),nn.BatchNorm2d(new_channels),nn.ReLU(inplace=True) if relu else nn.Sequential(),)def forward(self, x):x1 = self.primary_conv(x)x2 = self.cheap_operation(x1)out = torch.cat([x1,x2], dim=1)return out[:,:self.oup,:,:]

3.Ghost Bottlenecks网络结构图

 4.Ghost Bottlenecks相应代码

def depthwise_conv(inp, oup, kernel_size=3, stride=1, relu=False):return nn.Sequential(nn.Conv2d(inp, oup, kernel_size, stride, kernel_size//2, groups=inp, bias=False),nn.BatchNorm2d(oup),nn.ReLU(inplace=True) if relu else nn.Sequential(),)class SELayer(nn.Module):def __init__(self, channel, reduction=4):super(SELayer, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel),        )def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)y = torch.clamp(y, 0, 1)return x * yclass GhostBottleneck(nn.Module):def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se):super(GhostBottleneck, self).__init__()assert stride in [1, 2]self.conv = nn.Sequential(# pwGhostModule(inp, hidden_dim, kernel_size=1, relu=True),# dwdepthwise_conv(hidden_dim, hidden_dim, kernel_size, stride, relu=False) if stride==2 else nn.Sequential(),# Squeeze-and-ExciteSELayer(hidden_dim) if use_se else nn.Sequential(),# pw-linearGhostModule(hidden_dim, oup, kernel_size=1, relu=False),)if stride == 1 and inp == oup:self.shortcut = nn.Sequential()else:self.shortcut = nn.Sequential(depthwise_conv(inp, inp, 3, stride, relu=True),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),)def forward(self, x):return self.conv(x) + self.shortcut(x)

实验表明,YOLOv5-Ghost算法不仅降低了网络参数总量和计算复杂度FLOPS,同时还提高了网络推理速度。


 🚀🏆🍀【算法创新&算法训练&论文投稿】相关链接👇👇👇


【YOLO创新算法尝新系列】

🏂 美团出品 | YOLOv6 v3.0 is Coming(超越YOLOv7、v8)

🏂 官方正品 | Ultralytics YOLOv8算法来啦(尖端SOTA模型)

🏂 改进YOLOv5/YOLOv7——魔改YOLOv5/YOLOv7提升检测精度(涨点必备)

————————————🌴【重磅干货来袭】🎄————————————

🚀一、主干网络改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合ConvNeXt结构(纯卷积|超越Swin)

2.目标检测算法——YOLOv5/YOLOv7改进之结合MobileOne结构(高性能骨干|仅需1ms)

3.目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2(涨点神器)

4.目标检测算法——YOLOv5/YOLOv7改进结合BotNet(Transformer)

5.目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

6.目标检测算法——YOLOv5/YOLOv7改进结合新神经网络算子Involution(CVPR 2021)

7.目标检测算法——YOLOv7改进|增加小目标检测层

8.目标检测算法——YOLOv5改进|增加小目标检测层

🌴 持续更新中……

🚀二、轻量化网络(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​RepVGG(速度飙升)

2.目标检测算法——YOLOv5/YOLOv7改进之结合​PP-LCNet(轻量级CPU网络)

3.目标检测算法——YOLOv5/YOLOv7改进之结合轻量化网络MobileNetV3(降参提速)

4.目标检测算法——YOLOv5/YOLOv7改进|结合轻量型网络ShuffleNetV2

5.目标检测算法——YOLOv5/YOLOv7改进结合轻量型Ghost模块

🌴 持续更新中……

🚀三、注意力机制(持续更新中)🎄🎈

1.目标检测算法——YOLOv5改进之结合CBAM注意力机制

2.目标检测算法——YOLOv7改进之结合CBAM注意力机制

3.目标检测算法——YOLOv5/YOLOv7之结合CA注意力机制

4.目标检测算法——YOLOv5/YOLOv7改进之结合ECA注意力机制

5.目标检测算法——YOLOv5/YOLOv7改进之结合NAMAttention(提升涨点)

6.目标检测算法——YOLOv5/YOLOv7改进之结合GAMAttention

7.目标检测算法——YOLOv5/YOLOv7改进之结合无参注意力SimAM(涨点神器)

8.目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

9.​目标检测算法——YOLOv5/YOLOv7改进之结合​SOCA(单幅图像超分辨率)

🌴 持续更新中……

🚀四、检测头部改进(持续更新中)🎄🎈

1.魔改YOLOv5/v7高阶版(魔法搭配+创新组合)——改进之结合解耦头Decoupled_Detect

2.目标检测算法——YOLOv5/YOLOv7改进结合涨点Trick之ASFF(自适应空间特征融合)

🌴 持续更新中……

🚀五、空间金字塔池化(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​ASPP(空洞空间卷积池化金字塔)

2.目标检测算法——YOLOv5/YOLOv7改进之结合特征提取网络RFBNet(涨点明显)

🌴 持续更新中……

🚀六、损失函数及NMS改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进|将IOU Loss替换为EIOU Loss

2.目标检测算法——助力涨点 | YOLOv5改进结合Alpha-IoU

3.目标检测算法——YOLOv5/YOLOv7改进之结合SIoU

4.目标检测算法——YOLOv5将NMS替换为DIoU-NMS

🌴 持续更新中……

🚀七、其他创新改进项目(持续更新中)🎄🎈

1.手把手教你搭建属于自己的PyQt5-YOLOv5目标检测平台(保姆级教程)

2.YOLO算法改进之结合GradCAM可视化热力图(附详细教程)

3.目标检测算法——YOLOv5/YOLOv7改进之结合SPD-Conv(低分辨率图像和小目标涨点明显)

4.目标检测算法——YOLOv5/YOLOv7改进之更换FReLU激活函数

5.目标检测算法——YOLOv5/YOLOv7改进之结合BiFPN

🌴 持续更新中……

🚀八、算法训练相关项目(持续更新中)🎄🎈

1.目标检测算法——YOLOv7训练自己的数据集(保姆级教程)

2.人工智能前沿——玩转OpenAI语音机器人ChatGPT(中文版)

3.深度学习之语义分割算法(入门学习)

4.知识经验分享——YOLOv5-6.0训练出错及解决方法(RuntimeError)

5.目标检测算法——将xml格式转换为YOLOv5格式txt

6.目标检测算法——YOLOv5/YOLOv7如何改变bbox检测框的粗细大小

7.人工智能前沿——6款AI绘画生成工具

8.YOLOv5结合人体姿态估计

9.超越YOLOv5,0.7M超轻量,又好又快(PP-YOLOE&PP-PicoDet)

10.目标检测算法——收藏|小目标检测的定义(一)

11.目标检测算法——收藏|小目标检测难点分析(二)

12.目标检测算法——收藏|小目标检测解决方案(三)

🌴 持续更新中……

🚀九、数据资源相关项目(持续更新中)🎄🎈

1.目标检测算法——小目标检测相关数据集(附下载链接)

2.目标检测算法——3D公共数据集汇总(附下载链接)

3.目标检测算法——3D公共数据集汇总 2(附下载链接)

4.目标检测算法——行人检测&人群计数数据集汇总(附下载链接)

5.目标检测算法——遥感影像数据集资源汇总(附下载链接)

6.目标检测算法——自动驾驶开源数据集汇总(附下载链接)

7.目标检测算法——自动驾驶开源数据集汇总 2(附下载链接)

8.目标检测算法——图像分类开源数据集汇总(附下载链接)

9.目标检测算法——医学图像开源数据集汇总(附下载链接)

10.目标检测算法——工业缺陷数据集汇总1(附下载链接)

11.目标检测算法——工业缺陷数据集汇总2(附下载链接)

12.目标检测算法——垃圾分类数据集汇总(附下载链接)

13.目标检测算法——人脸识别数据集汇总(附下载链接)

14.目标检测算法——安全帽识别数据集(附下载链接)

15.目标检测算法——人体姿态估计数据集汇总(附下载链接)

16.目标检测算法——人体姿态估计数据集汇总 2(附下载链接)

17.目标检测算法——车辆牌照识别数据集汇总(附下载链接)

18.目标检测算法——车辆牌照识别数据集汇总 2(附下载链接)

19.收藏 | 机器学习公共数据集集锦(附下载链接)

20.目标检测算法——图像分割数据集汇总(附下载链接)

21.目标检测算法——图像分割数据集汇总 2(附下载链接)

22.收藏 | 自然语言处理(NLP)数据集汇总(附下载链接)

23.自然语言处理(NLP)数据集汇总 2(附下载链接)

24.自然语言处理(NLP)数据集汇总 3(附下载链接)

25.自然语言处理(NLP)数据集汇总 4(附下载链接)

🌴 持续更新中……

🚀十、论文投稿相关项目(持续更新中)🎄🎈

1.论文投稿指南——收藏|SCI论文投稿注意事项(提高命中率)

2.论文投稿指南——收藏|SCI论文怎么投?(Accepted)

3.论文投稿指南——收藏|SCI写作投稿发表全流程

4.论文投稿指南——收藏|如何选择SCI期刊(含选刊必备神器)

5.论文投稿指南——SCI选刊

6.论文投稿指南——SCI投稿各阶段邮件模板

7.人工智能前沿——深度学习热门领域(确定选题及研究方向)

8.人工智能前沿——2022年最流行的十大AI技术

9.人工智能前沿——未来AI技术的五大应用领域

10.人工智能前沿——无人自动驾驶技术

11.人工智能前沿——AI技术在医疗领域的应用

12.人工智能前沿——随需应变的未来大脑

13.目标检测算法——深度学习知识简要普及

14.目标检测算法——10种深度学习框架介绍

15.目标检测算法——为什么我选择PyTorch?

16.知识经验分享——超全激活函数解析(数学原理+优缺点)

17.知识经验分享——卷积神经网络(CNN)

18.海带软件分享——Office 2021全家桶安装教程(附报错解决方法)

19.海带软件分享——日常办公学习软件分享(收藏)

20.论文投稿指南——计算机视觉 (Computer Vision) 顶会归纳

21.论文投稿指南——中文核心期刊

22.论文投稿指南——计算机领域核心期刊

23.论文投稿指南——中文核心期刊推荐(计算机技术)

24.论文投稿指南——中文核心期刊推荐(计算机技术2)

25.论文投稿指南——中文核心期刊推荐(计算机技术3)

26.论文投稿指南——中文核心期刊推荐(电子、通信技术)

27.论文投稿指南——中文核心期刊推荐(电子、通信技术2)

28.论文投稿指南——中文核心期刊推荐(电子、通信技术3)

29.论文投稿指南——中文核心期刊推荐(机械、仪表工业)

30.论文投稿指南——中文核心期刊推荐(机械、仪表工业2)

31.论文投稿指南——中文核心期刊推荐(机械、仪表工业3)

32.论文投稿指南——中国(中文EI)期刊推荐(第1期)

33.论文投稿指南——中国(中文EI)期刊推荐(第2期)

34.论文投稿指南——中国(中文EI)期刊推荐(第3期)

35.论文投稿指南——中国(中文EI)期刊推荐(第4期)

36.论文投稿指南——中国(中文EI)期刊推荐(第5期)

37.论文投稿指南——中国(中文EI)期刊推荐(第6期)

38.论文投稿指南——中国(中文EI)期刊推荐(第7期)

39.论文投稿指南——中国(中文EI)期刊推荐(第8期)

40.【1】SCI易中期刊推荐——计算机方向(中科院3区)

41.【2】SCI易中期刊推荐——遥感图像领域(中科院2区)

42.【3】SCI易中期刊推荐——人工智能领域(中科院1区)

43.【4】SCI易中期刊推荐——神经科学研究(中科院4区)

44.【5】SCI易中期刊推荐——计算机科学(中科院2区)

45.【6】SCI易中期刊推荐——人工智能&神经科学&机器人学(中科院3区)

46.【7】SCI易中期刊推荐——计算机 | 人工智能(中科院4区)

47.【8】SCI易中期刊推荐——图像处理领域(中科院4区)

48.【9】SCI易中期刊推荐——工程技术-计算机:软件工程(中科院4区)

49.【10】SCI易中期刊推荐——工程技术-计算机:人工智能(中科院2区)

50.【11】SCI易中期刊推荐——计算机方向(中科院4区)

51.【12】SCI易中期刊推荐——计算机信息系统(中科院4区)

🌴 持续更新中……

关于YOLO算法改进&论文投稿可关注并留言博主的CSDN/QQ

>>>一起交流!互相学习!共同进步!<<<

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/1619397.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

[YOLOv7/YOLOv5系列改进NO.44]融入适配GPU的轻量级 G-GhostNet

文章目录 前言一、解决问题二、基本原理三、​添加方法四、总结 前言 作为当前先进的深度学习目标检测算法YOLOv7&#xff0c;已经集合了大量的trick&#xff0c;但是还是有提高和改进的空间&#xff0c;针对具体应用场景下的检测难点&#xff0c;可以不同的改进方法。此后的系…

CV顶刊!IJCV2022:G-GhostNet

GhostNet再升级&#xff0c;GPU上大显身手的G-GhostNet 作者设计出相比C-Ghost更适用于GPU等设备的G-Ghost&#xff0c;在实际延迟与性能之间取得了良好的权衡。Source Code 1、摘要 本文针对网络部署时面临的内存和资源有限的问题&#xff0c;提出两种不同的Ghost模块&#…

免费OCR图像识别文字识别API

免费OCR图像识别文字识别API 一、OCR图像识别文字识别二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、温馨提示 一、OCR图像识别文字识别 光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;是指对文本资料的图像文件进行分析识别…

nginx-获取客户端IP地址

上有服务器与客户端中间是有nginx代理服务器的&#xff0c;上游服务器如何获取客户端真实ip地址&#xff1f; nginx代理服务器设置X-Forwarded-For的header参数&#xff0c;代理服务器通过remote_addr获取客户端ip地址&#xff0c;将ip地址写入nginx代理服务器的X-Forwarded-Fo…

企业使用CRM如何统一销售流程管理?

销售流程我们可以理解为&#xff0c;销售人员从寻找潜在客户到最终达成交易的一系列步骤。很多企业通过CRM系统来进行销售流程管理&#xff0c;提高销售效率&#xff0c;实现销售目标。下面我们就来说说&#xff0c;CRM如何进行销售流程管理。 制定统一的销售流程&#xff1a;…

Git基本操作(Idea版)

第一次发布项目&#xff08;本地->远程&#xff09; 方式一 通过push的方式推送本地库到远程库&#xff08;远程已创建好仓库&#xff09; 这种方式需要提前创建好仓库。 右键点击项目&#xff0c;可以将当前分支的内容 push 到 GitHub 的远程仓库中。 注意&#xff1a…

推荐两个杀毒软件测试网站

VirScan - 多引擎文件在线检测平台 VirusTotal 软件发布前查一下毒还是很有必要的

vue拖拽div盒子实现上下拖动互换

vue拖拽div盒子实现上下拖动互换 <div v-for"(item, index) in formList" :key"index" draggable"true"dragstart"handleDragStart($event, item)"dragenter"handleDragEnter($event, item)"dragover.prevent"han…

深入理解Reactor模型的原理与应用

1、什么是Reactor模型 Reactor意思是“反应堆”&#xff0c;是一种事件驱动机制。 和普通函数调用的不同之处在于&#xff1a;应用程序不是主动的调用某个 API 完成处理&#xff0c;而是恰恰相反&#xff0c;Reactor逆置了事件处理流程&#xff0c;应用程序需要提供相应的接口并…

继域名解析后------------我的网页进不去了!!!(修复方法)

昨天域名解析之后&#xff0c;今天来公司上班发现公司网页进不去了&#xff0c;好在现在是平台升级维护期间&#xff0c;没什么业务。统计过后&#xff0c;发现有一半的公司员工登录不进去。这一半能登陆上的同事所使用的网络是500M电信宽带&#xff0c;而我们这边登录不上的都…

html打开d盘文件,为什么ie浏览器打不开c/d盘的html文件,直接跳出保存

满意答案 pvgpl 2014.02.05 采纳率&#xff1a;42% 等级&#xff1a;12 已帮助&#xff1a;12615人 清理一下磁盘碎片和系统垃圾。 不行就---------------- 请不要盗用我的答案!! 一号方案(新X) 注意(原创): 1.安全模式下&#xff0c;效果更好! 2. 以下所要使用的软件&#…

手把手教会你|Sockets多用户-服务器数据库编程

网络编程经常涉及数据库访问,电子商务更离不开数据库。例如用户请求股票报价、产品价格查询、网上交易等请求,服务器则需要连接对应的数据库,发送查询指令,得到数据库记录,经过处理后,发送给提出这个请求的用户。 在实际应用中,数据库经常由专门管理数据库的服务器运行。…

股票交易规则

交易时间 股票交易时要遵循 价格优先 时间优先&#xff0c;但如果同价又同时报价&#xff0c;那大单优先 具体交易时间规定&#xff1a; 每周一至周五&#xff0c;每天上午9:30至11:30&#xff0c;下午13:00至15:00&#xff0c;法定假期除外。 A股 上海交易所 集合竞价&#…

股票交易接口有没有提供试用的?

我们做量化交易&#xff0c;是需要使用工具的&#xff0c;因为量化交易交易频率很高&#xff0c;如果人工操作经历有限&#xff0c;一般是无法执行到位的&#xff0c;不过股票交易接口一般都需要收费&#xff0c;而且还不便宜&#xff0c;如果可以试用的话&#xff0c;那一定是…

股票自动委托下单html,股票怎么设置自动挂单?股票挂单的方式

股票怎么设置自动挂单?接下来小编为大家介绍。 股票挂单指在股票交易时把所要买进或卖出的股票的名称、数量、价格填写后提交给交易系统等待成交的过程。 传统网上交易下单&#xff0c;需要①从行情软件切换到委托软件&#xff0c;②输入需要买卖股票的代码&#xff0c;③输入…

基于SpringBoot实现MySQL与Redis的数据一致性

问题场景 在并发场景下&#xff0c;MySQL和Redis之间的数据不一致性可能成为一个突出问题。这种不一致性可能由网络延迟、并发写入冲突以及异常情况处理等因素引起&#xff0c;导致MySQL和Redis中的数据在某些时间点不同步或出现不一致的情况。数据一致性问题的级别可以分为三…

list(介绍与实现)

目录 1. list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modififiers 1.2.6 list的迭代器失效 2. list的模拟实现 2.1 模拟实现list 2.2 list的反向迭代器 1.…

代码随想录第32天|122.买卖股票的最佳时机 II,55. 跳跃游戏 ,45. 跳跃游戏 II

122.买卖股票的最佳时机 II 122. 买卖股票的最佳时机 II 思路比较简单 class Solution {public int maxProfit(int[] prices) {int res0,sum0;for(int i0;i<prices.length-1;i){if(prices[i1]-prices[i]>0){sumprices[i1]-prices[i];}ressum>res?sum:res;}return …

笔记本重装win7旗舰版原版操作系统

正常开机的电脑&#xff1a;直接重装&#xff08;最简单&#xff0c;最快&#xff09;、Ghost重装、U盘重装、光盘重装、硬盘安装 不能正常开机的电脑&#xff1a;U盘重装、光盘重装、硬盘安装 注意&#xff1a; 1.windows7原版系统是不带任何驱动程序的&#xff0c;请事先准…

w ndows7旗舰版怎么重装系统,windows7旗舰版iso怎么安装

现在安装系统要求操作简单、方便。硬盘安装方式就是最简单、最方便的系统安装方法。保证电脑能进入系统的前提下&#xff0c;本地硬盘安装windows7旗舰版iso系统&#xff0c;能够让你快速体验新的windows7旗舰版iso系统。接下来详细讲解下安装windows7旗舰版iso系统的操作过程&…