循环生成对抗网络CycleGAN

图像到图像的转换的目标是使用配准的图像对训练集来学习输入图像和输出图像之间的映射,而CycleGAN中使用的方法是缺少配对训练集的情况下进行图像转换。

传统的图像转换如上图左,训练集是配对的x,y图像{xi,yi};如上图右,训练集是源域{xi},目标域{yi},但二者之间未给定配对关系。

网络结构

涉及4个网络,生成器A2B,生成器B2A,判别器A判别器B

4种损失函数:G网络(用MSELoss计算)、D网络(用MSELoss计算)、Cycle(原始输入和Cycl输出,用L1Loss计算)、identify(对于生成器A2B用B作为输入,用L1Loss计算;对于生成器B2A用A作为输入,用L1Loss计算)

self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']

生成器网络结构:输入-->普通卷积-->图像越来越小,特征图越来越多-->反卷积-->图像越来越大,特征图越来越少-->输出(与输入相同大小)

判别器网络结构:输入-->普通卷积-->升维操作特征图越来越多-->假如得到MxNx512特征图,再经过卷积到得MxNx1的矩阵(后面需要针对每个像素点计算Loss)-->输出

 Cycle_gan_model.py

import torch
import itertools
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networksclass CycleGANModel(BaseModel):"""This class implements the CycleGAN model, for learning image-to-image translation without paired data.The model training requires '--dataset_mode unaligned' dataset.By default, it uses a '--netG resnet_9blocks' ResNet generator,a '--netD basic' discriminator (PatchGAN introduced by pix2pix),and a least-square GANs objective ('--gan_mode lsgan').CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf"""@staticmethoddef modify_commandline_options(parser, is_train=True):"""Add new dataset-specific options, and rewrite default values for existing options.Parameters:parser          -- original option parseris_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.Returns:the modified parser.For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses.A (source domain), B (target domain).Generators: G_A: A -> B; G_B: B -> A.Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A.Forward cycle loss:  lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper)Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper)Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper)Dropout is not used in the original CycleGAN paper."""parser.set_defaults(no_dropout=True)  # default CycleGAN did not use dropoutif is_train:parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)')parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)')parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1')return parserdef __init__(self, opt):"""Initialize the CycleGAN class.Parameters:opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions"""BaseModel.__init__(self, opt)# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>visual_names_A = ['real_A', 'fake_B', 'rec_A']visual_names_B = ['real_B', 'fake_A', 'rec_B']if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)visual_names_A.append('idt_B')visual_names_B.append('idt_A')self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.if self.isTrain:self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']else:  # during test time, only load Gsself.model_names = ['G_A', 'G_B']# define networks (both Generators and discriminators)# The naming is different from those used in the paper.# Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)if self.isTrain:  # define discriminatorsself.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)if self.isTrain:if opt.lambda_identity > 0.0:  # only works when input and output images have the same number of channelsassert(opt.input_nc == opt.output_nc)self.fake_A_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated imagesself.fake_B_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images# define loss functionsself.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)  # define GAN loss.self.criterionCycle = torch.nn.L1Loss()self.criterionIdt = torch.nn.L1Loss()# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))self.optimizers.append(self.optimizer_G)self.optimizers.append(self.optimizer_D)def set_input(self, input):"""Unpack input data from the dataloader and perform necessary pre-processing steps.Parameters:input (dict): include the data itself and its metadata information.The option 'direction' can be used to swap domain A and domain B."""AtoB = self.opt.direction == 'AtoB'self.real_A = input['A' if AtoB else 'B'].to(self.device)self.real_B = input['B' if AtoB else 'A'].to(self.device)self.image_paths = input['A_paths' if AtoB else 'B_paths']def forward(self):"""Run forward pass; called by both functions <optimize_parameters> and <test>."""self.fake_B = self.netG_A(self.real_A)  # G_A(A)self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))self.fake_A = self.netG_B(self.real_B)  # G_B(B)self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))def backward_D_basic(self, netD, real, fake):"""Calculate GAN loss for the discriminatorParameters:netD (network)      -- the discriminator Dreal (tensor array) -- real imagesfake (tensor array) -- images generated by a generatorReturn the discriminator loss.We also call loss_D.backward() to calculate the gradients."""# Realpred_real = netD(real)loss_D_real = self.criterionGAN(pred_real, True)# Fakepred_fake = netD(fake.detach())loss_D_fake = self.criterionGAN(pred_fake, False)# Combined loss and calculate gradientsloss_D = (loss_D_real + loss_D_fake) * 0.5loss_D.backward()return loss_Ddef backward_D_A(self):"""Calculate GAN loss for discriminator D_A"""fake_B = self.fake_B_pool.query(self.fake_B)self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)def backward_D_B(self):"""Calculate GAN loss for discriminator D_B"""fake_A = self.fake_A_pool.query(self.fake_A)self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)def backward_G(self):"""Calculate the loss for generators G_A and G_B"""lambda_idt = self.opt.lambda_identitylambda_A = self.opt.lambda_Alambda_B = self.opt.lambda_B# Identity lossif lambda_idt > 0:# G_A should be identity if real_B is fed: ||G_A(B) - B||self.idt_A = self.netG_A(self.real_B)self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt# G_B should be identity if real_A is fed: ||G_B(A) - A||self.idt_B = self.netG_B(self.real_A)self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idtelse:self.loss_idt_A = 0self.loss_idt_B = 0# GAN loss D_A(G_A(A))self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)# GAN loss D_B(G_B(B))self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)# Forward cycle loss || G_B(G_A(A)) - A||self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A# Backward cycle loss || G_A(G_B(B)) - B||self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B# combined loss and calculate gradientsself.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_Bself.loss_G.backward()def optimize_parameters(self):"""Calculate losses, gradients, and update network weights; called in every training iteration"""# forwardself.forward()      # compute fake images and reconstruction images.# G_A and G_Bself.set_requires_grad([self.netD_A, self.netD_B], False)  # Ds require no gradients when optimizing Gsself.optimizer_G.zero_grad()  # set G_A and G_B's gradients to zeroself.backward_G()             # calculate gradients for G_A and G_Bself.optimizer_G.step()       # update G_A and G_B's weights# D_A and D_Bself.set_requires_grad([self.netD_A, self.netD_B], True)self.optimizer_D.zero_grad()   # set D_A and D_B's gradients to zeroself.backward_D_A()      # calculate gradients for D_Aself.backward_D_B()      # calculate graidents for D_Bself.optimizer_D.step()  # update D_A and D_B's weights

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/1382499.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【Hack The Box】linux练习-- Pandora

HTB 学习笔记 【Hack The Box】linux练习-- Pandora &#x1f525;系列专栏&#xff1a;Hack The Box &#x1f389;欢迎关注&#x1f50e;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; &#x1f4c6;首发时间&#xff1a;&#x1f334;2022年11月27日&#x1f334; &#x1f…

SpringBoot/SpringCloud初探五(远程调用)

远程调用常用有RestTemplate和Feign&#xff0c;底层均使用Ribbon实现负载均衡。简单样例&#xff0c;演示远程集群调用。 一、RestTemplate Ribbon 访问方式&#xff1a;http://localhost:7903/condition/test&#xff0c;然后会执行以下访问&#xff1a;http://microservic…

15岁、42天、6000行!他可能是 Cocos 最小开发者……

前段时间&#xff0c;在 Cocos 中文论坛上出现了一篇题为《15岁初中生开发了一个多月的小游戏开源》的帖子&#xff0c;一石激起千层浪——游戏开发如今都“内卷”到这种程度了吗&#xff1f; 这篇帖子的发帖人是来自河北秦皇岛的15岁初二男生蔡岳江。今年&#xff0c;他耗时42…

比起第一代,《最后生还者2》到底做错了什么?

如果世界上不存在第一代《最后生还者》&#xff08;美国末日&#xff0c;以下简称TLOU&#xff09;的话&#xff0c;那么TLOU2的风评可能不会这么糟糕。当然&#xff0c;市场不承认如果&#xff1a;TLOU一代的地位毫无争议&#xff0c;而TLOU2的争议甚至影响到了游戏打折的价格…

分享Html模板5合一模板---50电影模板、56个游、86个体育项目、95个音乐网站、116个时尚

模板下载链接:https://pan.baidu.com/s/1zNvc5K8tpWbxAKuIziGgjg 密码:agk4 50电影模板Html模板&#xff01; 56个游戏Html模板 86个体育项目Html模板 95个音乐网站Html模板 116个时尚Html模板 我就不相信没有你需要的&#xff01; 50电影模板Html模板&#xff01; 儿童…

(每日更新)《虚拟现实VR资讯》(Yanlz+Unity+SteamVR+云技术+5G+AI=VR云游戏=云渲染+人机交互+立钻哥哥+==)

虚拟现实&#xff08;Virtual Reality&#xff09; 虚拟现实简称VR&#xff0c;是一种可以创建和体验虚拟世界的计算机仿真系统&#xff0c;它利用计算机生成一种模拟环境&#xff0c;是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。 …

有哪些漂亮的中国风 LOGO 设计?

提到中国风的logo&#xff0c;我觉得首先登场的应该是北京故宫博物院的logo&#xff0c;铛&#xff01; 故宫博物院的logo&#xff0c;从颜色&#xff0c;到外形&#xff0c;到元素&#xff0c;无一例外&#xff0c;充满了中国风的味道&#xff0c;可谓是中国风中的典型。 同一…

圆形的生成

圆形的生成 圆形的扫描转换中点画圆Bresenham画圆 圆形的扫描转换 在屏幕像素点阵中确定一组最佳逼近于圆的像素点&#xff0c;并用指定的颜色显示出来。 由于圆具有对称性&#xff0c;在进行扫描转换时&#xff0c;只需迭代生成八分之一圆的最佳像素逼近点&#xff0c;圆的其…

生成圆形Image

目标任务&#xff1a;实现一个圆形面片的Image&#xff0c;实现效果如下&#xff1a; 为什么要实现这个东西呢&#xff0c;其实原先在做这种圆形效果的时候都是在用Mask实现的&#xff08;相信很多都是这样的~&#xff08;罒ω罒&#xff09;&#xff09;&#xff0c;但是最近了…

圆形图形logo案例2

注意共有3个步骤&#xff0c;按顺序操作下去 1.用矩形绘画两个圆&#xff0c;然后使用路径查找器分割. 2.绘制长方形&#xff0c;把所有长方形使用路径查找器、联集 3.用这些长方形与两个圆相交的部分进行分割&#xff0c;然后取消分组&#xff0c;把多余的地方去掉&#xff0…

html5绘制圆形,Canvas绘制圆形

使用canvas绘制圆形步骤: 1、在页面中创建canvas的节点(相当于创建一个画板)&#xff0c;设置CSS样式。(注意&#xff1a;要在行内样式中设置canvas的宽高。) 2、在JS中获取节点&#xff0c;并获取画板(绘画环境)、设置画笔颜色。 var canvasdocument.getElementById(canvas); …

圆形图形logo案例3

注意共有3个步骤&#xff0c;按顺序操作下去 1.用矩形工具绘制基础图形. 2.绘制LOGO中间的图形&#xff0c;用路径查找器的“减去顶层”功能. 3.绘制圆形路径&#xff0c;用描点工具剪裁路径&#xff0c;然后在路径上写上字母&#xff0c;完成. 这就是我简单快速的方法&#…

java圆形矩形直线文字设计图_如何设计圆形文字logo?怎么让文字按圆形走?圆形文字logo...

美好的周末说过去一下子就过去了呢~今天又迎来了更加美好的周一哇&#xff0c;哈哈哈。好啦废话不多说&#xff0c;还是来看看今天的教程方案吧&#xff01;圆形文字logo是什么意思呢&#xff1f;不知道大家有没有看到过那种圆形的标志&#xff0c;比如小编大学时候&#xff0c…

圆形图形logo案例

注意共有2个步骤&#xff0c;按顺序操作下去 1.先用图形矩形绘制轮廓&#xff0c;最上面画一个椭圆形&#xff0c;ctrlc复制&#xff0c;ctrlf原地粘贴 2&#xff0c;两个描边图层一起进行效果&#xff0c;从上面开始做起&#xff0c;第一个两个图形选中后使用减去后方对使用的…

设计模式之简单工厂模式

一、概述 定义一个用于创建对象的接口&#xff0c;让子类决定实例化哪一个类。FactoryMethod使一个类的实例化延迟到其子类。 简单工厂模式&#xff1a;又叫做静态工厂方法模式&#xff0c;是由一个工厂对象决定创建出哪一种产品类的实例。 二、适用性 1.当一个类不知道它所…

【LeetCode 75】第二十六题(394)字符串解码

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码运行结果&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们字符串&#xff0c;让我们解码&#xff0c;那么该怎么解码呢&#xff0c;被括号【】包裹起来的字符串需要扩展成括号左边第…

2023最新python学习方法总结!(内部机密)

不要再问我python好不好学了 我之前做过半年少儿编程老师&#xff0c;一个小学四年级的小孩子都能在我的教学下独立完成python游戏&#xff0c;植物大战僵尸简单版&#xff0c;如果要肯花时间&#xff0c;接下来的网络开发也不是问题&#xff0c;人工智能也可以学个调包也没啥问…

【Python机器学习】实验10 支持向量机

文章目录 支持向量机实例1 线性可分的支持向量机1.1 数据读取1.2 准备训练数据1.3 实例化线性支持向量机1.4 可视化分析 实例2 核支持向量机2.1 读取数据集2.2 定义高斯核函数2.3 创建非线性的支持向量机2.4 可视化样本类别 实例3 如何选择最优的C和gamma3.1 读取数据3.2 利用数…

MySQL出现(2003)错误的解决方法(三种思路)

MYSQL的2003错误代码是:"cant connection to mysql server on ‘IP’" 意思为:"无法连接到“IP”上的 mysql 服务器". 我下列描述的问题中,第一种和第三种是以虚拟机连接MYSQL的2003方法; 而第二种是用的typora-setup-x64在本机中使用构建MYSQL服务的方…

Java集合框架面试题总结及解析

文章目录 说出 collection 的常用子接口&#xff1f;说出 3 个以上的常 用方法&#xff1f;都有什么作用&#xff1f;如果向 TreeSet 中加入类对象&#xff0c;需要做什么&#xff1f;Set 里的元素是不能重复的&#xff0c;那么用什么方法来区分重复与否呢? 是用还是 equals()…