浅谈操作系统中的重要概念——线程(3)——设计模式

文章目录

  • 一、什么是设计模式?
  • 二、单例模式
    • 2.1、饿汉模式
    • 2.2、懒汉模式
    • 2.3、多线程情况下调用 饿汉模式与懒汉模式 谁是安全的??(重点)
  • 三、工厂模式

一、什么是设计模式?

设计模式就相当于菜谱,有了菜谱/秘籍,就能够根据菜谱上的指引/步骤做出许多从前不会的美食,就算不会下厨的人,拥有了食谱,他的厨艺也能够得到提升和保障。

因此设计模式就是程序员的菜谱,设计模式中介绍了许多典型场景,以及针对这些典型场景的处理办法。按照设计模式来写的代码不会很差,在一定的规范范围里。

设计模式有很多种,不止23种,今天主要介绍两种常见、常用的:
1、单例模式
2、工厂模式

二、单例模式

单例模式对应的场景:希望代码中的有些对象在整个程序中只有一个实例(即对象只能 new 一次)。

譬如说:JDBC中的数据源DataSource这样的对象就只需要一个即可,因此这个对象就可以使用单例模式。

对于我们程序员来说,如果有些对象在整个程序中只需要有一个实例即可,那我们程序员就只new一次就好了,为什么还需要引入单例模式??那是因为对于程序来说,人是不靠谱的,就需要引入单例模式,此时由编译器来进行严格的检查(对于代码中只能new一次的对象,如果尝试new了多次,编译器就会直接报错来进行提示),确保某些对象处于单例模式。

接下来介绍一下在Java中单例模式的两种写法:

2.1、饿汉模式

饿汉模式:程序启动进行类加载之后,立即创建出实例。(比较迫切)

代码例子:

class Singleton{/*** 此处就期望类Singleton只有一个实例*///    静态成员:instance
//    static  静态的,与类相关的,整个程序中只有一份private static Singleton instance = new Singleton();//    通过此方法,随时获取到刚刚的 instance 变量public static Singleton getInstance(){return instance;}//    作出限制:禁止别人去 new 这个类的实例——>将构造方法变成privateprivate Singleton(){}
}public class testHunger {public static void main(String[] args) {Singleton s1 = Singleton.getInstance();Singleton s2 = Singleton.getInstance();
//        此时我们再new类的实例,直接编译报错(编译器校验了)
//        Singleton s3 = new Singleton();//        我们可以发现 s1、s2 这两个都是同一个对象System.out.println(s1.equals(s2)); //true
//        s1、s2 和 s3 不是同一个对象
//        System.out.println(s3.equals(s1)); //false
//        System.out.println(s3.equals(s2)); //false}
}

但是上述代码中,我们将类的构造方法改成private,此时别人就一定不能创建多个实例了吗??其实还是可以通过 反射机制 ,在当前单例模式中,创建出多个实例。
在这里插入图片描述但是反射属于 “非常规” 的编程手段,正常开发的时候,慎重使用,因为 滥用反射,会给代码带来极大风险,譬如会让代码变得抽象,日后难以维护,还破坏了Java的封装性。

当然Java中也有其他方式书写单例模式来防止反射,但此处不做过多介绍,可以自行查阅资料了解。

2.2、懒汉模式

懒汉模式:第一次使用实例的时候才创建实例,否则能不创建就不创建。(比较佛系)

/*** 代码示例:* 单例模式中的懒汉模式*/
class SingletonLazy{private static SingletonLazy instance = null;public static SingletonLazy getInstance(){if(instance == null){instance = new SingletonLazy();}return instance;}private SingletonLazy(){}
}public class testLazy {public static void main(String[] args) {SingletonLazy s1 = SingletonLazy.getInstance();SingletonLazy s2 = SingletonLazy.getInstance();//        同样也是可以通过非常规手段:反射机制 获取类的实例Class<SingletonLazy> s3 = SingletonLazy.class;System.out.println(s3.equals(s1));System.out.println(s1.equals(s2));}
}

2.3、多线程情况下调用 饿汉模式与懒汉模式 谁是安全的??(重点)

饿汉模式:
在这里插入图片描述

懒汉模式:
在这里插入图片描述
在这里插入图片描述
上述逻辑,也是一个经典的面试题!

那我们如何保证懒汉模式的线程安全呢?

由于上述引起线程安全的原因是 if语句与new语句不是一个整体,因此出现了线程安全问题,此时我们通过将if语句和new语句打包成一个整体来解决懒汉模式的线程安全问题。

在这里插入图片描述
加锁之后,线程在cpu上的执行流程:(当加了锁之后,线程t2执行if语句时,就会发现此时的instance是一个非null的值,)
在这里插入图片描述
虽然加了锁,解决了线程安全问题,但是还存在问题:加锁是一个高成本的操作,会引起阻塞等待。加锁的基本原则应该是:非必要,不加锁。不能无脑加锁,如果无脑加锁,就会导致程序的执行效率受到影响。

此时我们对懒汉模式的代码中加的锁,导致后续每次调用 getInstance() 方法都要加锁,但是这是不合理且不必要的。**懒汉模式线程不安全主要是因为首次 new 对象时,才存在的。一旦将对象 new 出来后,后续再调用 getInstance() 方法就不存在线程安全问题了。**但是我们现在的加锁是:首次 new 对象调用时,加锁了。后续调用,也加锁了。但实际上后续调用不必加锁,因为后续调用后if条件就进不去了,此时也就不再涉及到修改操作了,全是读操作。但我们把不该加锁的地方加上锁了,很影响程序的执行效率。

对加锁操作做出以下修改:
在这里插入图片描述

两个if语句之间存在加锁操作,加锁就会引起线程阻塞等待,究竟阻塞等待多久,不知道,有可能第一个if语句与第二个if语句间隔沧海桑田,因此在这个长久的时间间隔里,可能别的线程就把instance改了。

上述对加锁操作做了修改之后,还存在一个问题:
在这里插入图片描述
已知一般 instance = new SingletonLazy();可以大致分成3个步骤:
1、给对象创建出内存空间,得到内存地址。
2、在空间上调用构造方法,对对象进行初始化。
3、把内存地址赋值给 instance引用。
在这里插入图片描述

假设现在代码的执行顺序由123变成132,但是在执行步骤3之后,进行了线程切换,此时还没来得及执行步骤2,即给对象初始化,就调度给别的线程了,此时别的线程执行的时候,判断instance不为空了,于是就直接返回instance,并且后续代码中可能会使用 instance 中的一些属性或者方法,但是由于多线程下出现了指令重排序的问题导致线程安全问题,此时的instance是个空引用,即拿到的这个对象,是个没有进行初始化,不完整的对象。

解决办法:给变量 instance 加上 volatile 之后,此时针对 instance 的赋值操作,就不会产生上述的指令重排序了,其执行顺序必然是遵循1、2、3执行。

加上 volatile 还有一个另外的用途:避免此处赋值操作的指令重排序。

懒汉模式的最终代码版本:

/*** 代码示例:* 单例模式中的懒汉模式*/
class SingletonLazy{private static volatile SingletonLazy instance = null;public static SingletonLazy getInstance(){if (instance == null){synchronized (SingletonLazy.class){if(instance == null){instance = new SingletonLazy();}}}return instance;}private SingletonLazy(){}
}public class testLazy {public static void main(String[] args) {SingletonLazy s1 = SingletonLazy.getInstance();SingletonLazy s2 = SingletonLazy.getInstance();//        同样也是可以通过非常规手段:反射机制 获取类的实例Class<SingletonLazy> s3 = SingletonLazy.class;System.out.println(s3.equals(s1));System.out.println(s1.equals(s2));}
}

懒汉模式代码的3大要点:
1、加锁
2、双重if
3、volatile

从字面上理解/区分 饿汉模式和懒汉模式 会比较抽象,举2个例子加深一下理解:
譬如说日常生活中,吃完饭之后需要洗碗,有的人习惯吃完饭后立即洗碗,有的人习惯吃完饭后将碗放到一边,等到下顿饭要吃的时候才洗碗。夜宵大家会觉得吃完饭之后立即洗碗是一种高效率的生活方式,但其实在不考虑卫生的情况下,吃完饭后不洗碗,等到下次开饭再洗碗然后接着用,其实效率会更高。比如说这顿吃完有4个碗,下顿开饭只需要用到2个碗,此时就只需要洗2个碗来用就行了,效率大大提高了。

还譬如说:假设编辑器打开一个很大的文件,有的编辑器会一下尝试把所有内容都加载到内存中,再显示出来,这是典型的饿汉模式。有的编辑器,则只加载一部分内容(一个屏幕能显示的内容),其他部分,当用户翻页想要浏览时,再加载出来,这是典型的懒汉模式。

三、工厂模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3017559.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

30万买智驾车,选特斯拉还是华为?

文 | AUTO芯球 作者 | 雷歌 我真是佩服马斯克&#xff0c; 一趟24小时的北京出差&#xff0c;就解除了Model车系进入机关单位禁令的问题&#xff0c; 也打开了特斯拉FSD完全自动驾驶进入中国市场的大门&#xff0c; 给我我一天时间&#xff0c;估计一部剧都追不完&#xf…

贡献思维,CF1644E. Expand the Path

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 Problem - 1644E - Codeforces 二、解题报告 1、思路分析 很容易想明白被…

暗区突围pc端资格发放了吗 暗区突围pc测试资格怎么获取

暗区突围pc端资格发放了吗 暗区突围pc测试资格怎么获取 暗区突围是一款很火爆的第一人称射击网游&#xff0c;现在终于要上线PC端啦&#xff01;小伙伴们是不是已经迫不及待想要体验电脑上的硬核射击快感了&#xff1f;暗区突围pc端资格已经陆续发放&#xff0c;想要参与PC端…

Adobe-Premiere-CEP 扩展 入门-视频剪辑-去气口插件-Silence Remover

短视频&#xff0c;这两年比较火&#xff0c;不要再问为什么用Premiere&#xff0c;非常难用&#xff0c;为什么不用某影&#xff0c;某些国内软件非常接地气简单&#xff0c;又例如某音资深的视频短编辑就很好用了。。。 Premiere二次开发调试难&#xff0c;不如自己搞个cons…

PNG、JPG如何转Dicom(dcm),那些年我踩过的坑(Python版)

Dicom作为医学影像的常见数据格式&#xff0c;是每个深耕于医疗AI的同学无法跳过的一个坑。虽然我只是一名扎根于算法部署方面的小白。但是也不可避免地接触到这类数据。这不&#xff0c;最近接到算法同学给出的算法&#xff0c;需要我自己找公开数据集进行测试。可是Dicom数据…

NFCP502-W05 电流数据是多少安培?

YOKOGAWA NFCP502-W05 是一款由横河电机&#xff08;Yokogawa Electric Corporation&#xff09;生产的微型断路器&#xff08;Microcircuit Breaker&#xff0c;简称 MCB&#xff09;。 横河电机是一家日本的跨国公司&#xff0c;专注于自动化和控制系统、仪器和其他相关设备…

【计算机科学速成课】笔记三

文章目录 17.集成电路真空管时代晶体管时代集成电路时代印刷电路板时代光刻时代 17.集成电路 Over the past six episodes, we delved into software, 过去 6 集我们聊了软件 \N 从早期编程方式到现代软件工程 from early programming efforts to modern software engineerin…

Linux进程地址空间第三讲

至今为止&#xff0c; 我们所学到的大多数的知识&#xff0c; 包括语言&#xff0c; 数据结构&#xff0c; 动静态库等等的 都是在下面这3G&#xff0c; 也就是用户空间里的(进程等待&#xff0c; 信号之类的与内核有关的是在上面那1G里的) 所以对于我们来说&#xff0c; 我们…

NXP i.MX8系列平台开发讲解 - 1.1 导读前言

专栏文章目录传送门&#xff1a;返回专栏目录 文章目录 目录 1. 本专辑介绍 2. 学习本专辑作用 3.关于作者 1. 本专辑介绍 本专辑将会介绍Linux 驱动开发&#xff0c;Android BSP 驱动涉及HAL层调试&#xff0c;适用于嵌入式软件开发人员&#xff0c;和有兴趣向该方向发展…

题目----力扣--移除链表元素

题目 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5]示例 2&#xff1a; 输入&…

1-2 ARM单片机GPIO

def&#xff1a;通用输入输出口 GPIO输出模式原理讲解 1&#xff1a;推挽输出 2&#xff1a;复用推挽输出 电流最大是20mA&#xff0c;对于单片机来说总体的输出是由范围的 开漏/复用开漏输出 外部接上拉电阻的开漏输出 线与的概念 注&#xff1a; 与的概念&#xff1a;全1为1&…

动态内存开辟(下)

前言 动态内存开辟以及柔性数组的介绍 一、 几个经典的笔试题 1. 题目一 void Getmemory(char*p) {p (char*)malloc(100); } int main() {char* str NULL;Getmemory(str);strcpy(str, "hello world");printf(str);return 0; } 这段代码我们可以发现两个很明显…

2-5 任务:打印九九表

本次实战的目标是通过编写程序实现打印九九乘法表、字符矩形、字符平行四边形和字符菱形等图形&#xff0c;以及解决百钱买百鸡问题和输出素数等实际问题。在实战过程中&#xff0c;我们将学习并掌握以下知识点。 双重循环的使用&#xff1a;通过双重循环实现九九乘法表的打印&…

视频素材库在哪里找免费手机版?8个可以用手机浏览的素材网

在视觉内容占据主导地位的今天&#xff0c;合适的视频素材可以大大提升项目的吸引力和效果。以下列出的视频素材网站为广告制作者、社交媒体策略师及电影制作人提供了从传统到现代风格的各种视频素材选择&#xff0c;满足不同的创作需求。 1. 蛙学府&#xff08;中国&#xff…

大模型系列之解读MoE

Mixtral 8x7B 的推出&#xff0c; 使我们开始更多地关注 基于MoE 的大模型架构&#xff0c; 那么&#xff0c;什么是MoE呢&#xff1f; 1. MoE溯源 MoE的概念起源于 1991 年的论文 Adaptive Mixture of Local Experts&#xff08;https://www.cs.toronto.edu/~hinton/absps/jjn…

艺术的新领域——探索元宇宙艺术展带来的沉浸式艺术体验

在数字化的浪潮中&#xff0c;元宇宙艺术展成为了一种全新的展览形式&#xff0c;它通过虚拟现实、3D建模技术和互动平台&#xff0c;将传统艺术与现代科技巧妙结合&#xff0c;提供了一种前所未有的艺术欣赏方式。此类展览不仅展示了艺术作品的新颖呈现&#xff0c;还为参观者…

京东生产环境十万并发秒杀系统三高架构

文章目录 三高——高并发、高可用、高可扩展用数据库乐观锁解决超卖阿里巴巴&#xff1a;为了提升数据库性能&#xff0c;对数据库的源码级别做了改造——在DB内部实现内存队列&#xff0c;一次性接收很多的请求&#xff0c;一次性更新。京东&#xff1a;redis&#xff0c;mq&a…

【C++ 关键字】const 关键字详解

文章目录 1. const 概念2.常量指针 和 指针常量 的区别2.1 常量指针&#xff08;底层 const&#xff09;2.2 指针常量 (顶层 const) 3.const 关键字的作用4.const 和 define 的区别5.const 总结 1. const 概念 const 是一个关键字&#xff0c;被修饰的值不能改变&#xff0c;是…

AI模型:windows本地运行下载安装ollama运行Google CodeGemma可离线运行数据模型【自留记录】

AI模型&#xff1a;windows本地运行下载安装ollama运行Google CodeGemma可离线运行数据模型【自留记录】 CodeGemma 没法直接运行&#xff0c;需要中间软件。下载安装ollama后&#xff0c;使用ollama运行CodeGemma。 类似 前端本地需要安装 node.js 才可能跑vue、react项目 1…