基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)

这里写目录标题

  • 基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)
    • 一、项目概述
    • 二、微博热词统计析
    • 三、微博文章分析
    • 四、微博评论分析
    • 五、微博舆情分析
    • 六、项目展示
    • 七、结语

基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)

一、项目概述

基于Python的微博舆情数据爬虫可视化分析系统,结合了NLP情感分析、爬虫技术和机器学习算法。该系统的主要目标是从微博平台上抓取实时数据,对这些数据进行情感分析,并通过可视化方式呈现分析结果,以帮助用户更好地了解舆情动向和情感倾向。系统首先利用爬虫技术实时抓取微博平台上的相关数据,包括文本内容、评论、转发等信息。接着,应用NLP情感分析技术对这些数据进行情感倾向的判断,识别出其中的正面、负面和中性情绪。随后,通过机器学习算法对情感数据进行分类和聚类分析,以发现潜在的规律和趋势。最终,系统将通过直观的可视化图表和报告展示分析结果,包括情感分布、热门话题、关键词等内容,为用户提供全面的舆情信息。此外,用户还可以根据自定义需求进行数据筛选和定制化分析,以便更深入地挖掘微博舆情数据的价值和意义。通过这个系统,用户可以及时了解社会各界对特定话题的态度和情感倾向,从而做出更明智的决策和行动。

二、微博热词统计析

微博热词统计:热点年份变化趋势、热词情感分析、热词频率分析
首先,热点年份变化趋势是指在不同年份中,微博上的热点话题发展的趋势和变化。通过统计不同年份中的热词,我们可以了解到社会关注焦点的转移和变化趋势。例如,某个年份的热词可能主要集中在娱乐明星或电视剧上,而另一个年份可能更多关注社会事件或政治话题。热词情感分析是通过对热词相关微博内容的情感倾向进行分析。通过对微博用户的评论、转发和点赞等行为进行监测和分析,可以了解到用户对热词所表达的情绪态度。例如,某个热词在微博上的情感分析结果可能显示大多数用户对该话题持正面态度,少数用户持负面态度。这样的分析有助于我们了解社会舆论对于热点话题的态度和倾向。
最后,热词频率分析是指对热词在微博上出现的频率进行统计和分析。通过统计不同热词在微博平台上的出现次数,可以了解到不同话题的受关注程度和热度。例如,某个热词在一段时间内频繁出现,说明这个话题在社会上引起了广泛关注。

三、微博文章分析

微博文章分析:文章类型占比分析、文章评论量分析、文章转发量分析、文章内容词云分析、文章基本信息统计分析文章评论量分析:评论量是衡量文章受关注程度的要指标之一。通过统计文章的评论数量,可以了解用户对文章的关注程度和参与度。这可以帮助我们判断文章的受欢迎程度和影响力。
文章转发量分析:转发量是衡量文章传播范围和影响力的指标之一。通过统计文章的转发数量,可以了解用户对文章内容的认同和推荐程度。这有助于评估文章的传播效果和影响力。
文章内容词云分析:文章内容词云是通过对文章中出现频率较高的词语进行可视化展示,以呈现文章的关键主题和热点话题。通过词云分析,可以直观地了解文章的主要内容和关注点。
文章基本信息统计分析:文章基本信息统计分析包括统计文章的发布时间、作者、阅读量等关键信息。这些统计数据可以帮助我们了解文章的发布趋势、作者影响力以及受众规模等信息。

四、微博评论分析

微博评论分析:评论用户性别占比分析、用户评论词云图分析、评论点赞分析。
对于微博评论的用户性别占比分析,通过统计和分析这些信息,我们可以了解在一定的评论样本中,男性和女性用户的数量占比情况。这可以为我们提供有关该话题或事件下不同性别用户参与讨论的情况,有助于了解不同性别用户的观点和态度。用户评论词云图分析可以帮助我们了解评论中出现频率较高的关键词。我们可以通过文本处理技术,对评论内容进行分词并统计词频,然后将高频词汇绘制成词云图。这样,我们就能够直观地看到哪些词汇在评论中被提及得较多,从而推测用户对该话题或事件的关注点和情感倾向。最后,评论点赞分析可以帮助我们了解哪些评论在用户中较受欢迎或者认同。通过统计每条评论的点赞数,我们可以排名评论的受欢迎程度,并分析受欢迎的评论内容特点。这有助于我们了解用户对于该话题或事件的主要认同观点,以及哪些评论具有较高的影响力。

五、微博舆情分析

微博舆情分析:热词情感趋势、文章内容与评论内容舆情趋势分析。微博热词情感趋势是指根据微博用户在某一段时间内热议的关键词或话题的相关内容进行情感分析,从而了解用户对该热词的情感态度变化趋势。情感趋势分析可以帮助我们更好地了解用户的喜好、态度以及对某一事件或话题的关注程度。
文章内容与评论内容舆情趋势分析是指通过对网络上用户发布的文章内容和评论内容进行分析,了解用户对某一事件、产品或话题的舆情倾向。舆情趋势分析可以帮助我们了解用户对某一事件的态度、关注度以及舆论走向,从而有效地进行舆情管理和营销策划。

六、项目展示

(1)系统首页-数据概况

在这里插入图片描述

在这里插入图片描述

(2)热词统计
在这里插入图片描述

(3)舆情统计
在这里插入图片描述

(4)舆情文章分析

在这里插入图片描述
在这里插入图片描述

(5)IP地址分析

在这里插入图片描述

(6)评论分析

在这里插入图片描述

(7)舆情分析

在这里插入图片描述

(8)文章内容词云分析
在这里插入图片描述
在这里插入图片描述

七、结语

需项目资料/商业合作/交流探讨等可以添加下面个人名片,后续有时间会持续更新更多优质项目内容,感谢各位的喜欢与支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2906493.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

疯狂数字直角三角形

上一篇文章的输出的数字直角三角形有个限制,就是边长n最大值为13,因为超过13最后就会输出3位数,这样斜边就不成一条直线了。 如果去掉这个限制呢?随便输入一个正整数(int型),还能否输出这样的数…

【管理咨询宝藏59】某大型汽车物流战略咨询报告

本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏59】某大型汽车物流战略咨询报告 【格式】PDF 【关键词】HR调研、商业分析、管理咨询 【核心观点】 - 重新评估和调整商业模式,开拓…

记一次 .NET某防伪验证系统 崩溃分析

一:背景 1. 讲故事 昨晚给训练营里面的一位朋友分析了一个程序崩溃的故障,因为看小伙子昨天在群里问了一天也没搞定,干脆自己亲自上阵吧,抓取的dump也是我极力推荐的用 procdump 注册 AEDebug 的方式,省去了很多沟通…

Linux离线安装mysql,node,forever

PS:本文是基于centos7实现的,要求系统能够查看ifconfig和unzip解压命令, 实现无网络可安装运行 首先现在百度网盘的离线文件包****安装Xftp 和 Xshell 把机房压缩包传到 home目录下****解压unzip 包名.zip 获取IP先获取到 linux 主机的ip ifconfig Xftp 连接输入IP,然后按照…

Nginx-记

Nginx是一个高性能的web服务器和反向代理服务器,用于HTTP、HTTPS、SMTP、POP3和IMAP协议。因它的稳定性、丰富的功能集、示例配置文件和低系统资源的消耗而闻名。 (1)更快 这表现在两个方面:一方面,在正常情况下&…

Go的数据结构与实现【Stack】

介绍 栈是存放值的一种特殊容器,在插入与删除值时,这种结构遵循后进先出(Last-in-first-out,LIFO)的原则,也就是说,值可以任意插入栈中,但每次取出的都是此前插入的最后一个值。 实…

STM32第十节(中级篇):EXTI(第一节)——EXTI功能框图及初始化结构体讲解(包括STM32中断应用总结)

目录 前言 STM32第十节(中级篇):EXTI(第一节)——EXTI功能框图及初始化结构体讲解(包括STM32中断应用总结) EXTI功能框图 EXTI初始化结构体讲解 STM32中断应用总结 NVIC介绍 优先级 优先…

安卓Activity上滑关闭效果实现

最近在做一个屏保功能,需要支持如图的上滑关闭功能。 因为屏保是可以左右滑动切换的,内部是一个viewpager 做这个效果的时候,关键就是要注意外层拦截触摸事件时,需要有条件的拦截,不能影响到内部viewpager的滑动处理…

数据结构:静态链表(编程技巧)

文章目录 一、理解二、静态链表2.1、结构定义2.2、静态链表的初始化2.3、操作2.4、示例2.5、优点2.6、缺点 三、例题 ​ 链表的元素用数组存储, 用数组的下标模拟指针。 一、理解 如果有些程序设计语言没有指针类型,如何实现链表?   在使用…

电气识图基础

1 电气系统组成 电气系统分为强电系统和弱电系统。 强电系统有变配电系统,照明系统,动力系统,接地系统。弱电系统有消防报警系统,安全防范系统,楼宇自控系统等等。强电和弱电的区别? 在非电力工程领域。强电和弱电是以电压分界的,工作在交流220伏以上为强电,以下为弱电…

【目标跟踪】红绿灯跟踪

文章目录 一、前言二、结果三、跟踪3.1、检测输入3.2、预测与运动补偿3.3、第一次匹配3.4、第二次匹配3.5、第三次匹配3.6、航迹的起始与信息的发布 四、后记 一、前言 红绿灯场景对当前无人驾驶来说是个灾难性的挑战。暂且不说复杂的十字路口,譬如简单的人行道红绿…

马上蓝桥杯了,干货总结动态规划专题,祝你考场爆杀(拔高篇)最佳课题选择 书本整理 打鼹鼠 吃吃吃 非零字段划分

目录 最佳课题选择 思路: 书本整理 思路: 打鼹鼠 思路: 吃吃吃 思路: 非零字段划分 最佳课题选择 思路: 根本还是论文的分配,每个课题分配多少个论文是不确定的,这个也是很影响转…

天梯算法Day3整理

浮点数解析 炸鱼题掠过 冲突值 题面 解析 方法一 —— 并查集 按照边值排序,然后按边值从大到小遍历,通过并查集判断能否将所有点无冲突地归于两个集合。在判断时,若有两个点不得不产生冲突,则输出这两个点之间的边值并结束。…

PLC通讯时如何判断选用MODBUS方式还是现场总线方式?

在工业自动化领域,PLC扮演着至关重要的角色。然而,许多人在初次接触PLC通讯时,常因其复杂性而感到困扰。事实上,PLC的通讯并不如人们想象中的那么神秘,它主要只有两种类型:一种是需要编写代码的通讯方式&am…

Verilog语法之assign语句学习

assign语法主要是对组合逻辑的变量进行赋值的,就是把一个变量赋值给另一个变量,被复制的变量必须是wire类型的参数。 从仿真结果可以看出,data_in变量的值赋值给了data_out,assign语法就是赋值没有任何延迟,data_in是什么值&#…

服务器被挖矿了怎么办,实战清退

当我们发现服务器资源大量被占用的时候,疑似中招了怎么办 第一时间重启服务是不行的,这些挖矿木马一定是会伴随着你的重启而自动重启,一定时间内重新霸占你的服务器资源 第一步检查高占用进程 top -c ps -ef 要注意这里%CPU,如果…

[Python人工智能] 四十五.命名实体识别 (6)利用keras构建CNN-BiLSTM-ATT-CRF实体识别模型(注意力问题探讨)

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。这篇文章将详细结合如何利用keras和tensorflow构建基于注意力机制的CNN-BiLSTM-ATT-CRF模型,并实现中文实体识别…

【MySQL】16.事务管理(重点) -- 2

1. 事务隔离级别 如何理解隔离性1 MySQL服务可能会同时被多个客户端进程(线程)访问,访问的方式以事务方式进行一个事务可能由多条SQL构成,也就意味着,任何一个事务,都有执行前,执行中,执行后的阶段。而所…

Linux 动静态库的制作,使用和加载

Linux 动静态库的制作,使用和加载 一.前置说明1.mylib.h2.mylib.c3.mymath.h mymath.c4.如何制作库 二.动静态库的制作1.静态库的制作1.制作2.使用一下静态库,验证是否成功打包 2.动态库的制作1.编译.c源文件文件生成.o目标文件2.打包生成动态库3.编写makefile文件,自动化制作动…

【SpringCloud】Ribbon负载均衡

🏡浩泽学编程:个人主页 🔥 推荐专栏:《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 🛸学无止境,不骄不躁,知行合一 文章目录 …