大模型预测,下一个token何必是文字?

太快了太快了…

大模型的生成技能,已经到了普通人看不懂的境界!

它可以根据用户过去5年的体检报告,生成未来第1年、第2年、第3年的体检报告。

你看,这个生成的过程,是不是像极了ChatGPT,根据历史单词预测下一个单词。

图片

它能查看过去7天机组子部件的运行情况,生成未来3天每小时的子部件报告 。

图片

还能基于历史水文数据和未来7天气象数据,生成未来第1天、第2天……至第7天的每小时降水分析报告,包括详细降水量、降水分布。

图片

如今,大模型的生成内容,早已不只是文字/图像/视频了

如上生成的这些报告分析涉及诸多专业知识,普通人很难基于自己的知识储备评价其合理性和正确性。

最多只能评价一句:不明觉厉!

怎么说呢?“AI似乎正在生成一切”。

LLM+行业数据,路走错了?

简单理解大模型,就是Predict the Next “X”。ChatGPT是Predict the Next “Word”。

但行业需要的往往不是预测下一个字。

比如对于慢性病患者的健康管理规划,它需要基于一系列生理指标数据,从医学角度进行数据预测。举个不恰当的例子,这更像是用数学方法解题。

如果在大语言模型基础上投喂大量专业的医学语料,更像是用语文方法读题。尽管能理解相关的术语和指标,可是给出的预测结果大概率不准确。因为问题本身超出了“语言”范畴,不能用语文方法求解

如果“X“的模态从“文字Word”变成了“体检报告”,模型则可以根据历史体检报告数据去预测下一个体检报告,这才是一个健康管理大模型。

图片

它的逻辑更像是“种瓜得瓜、种豆得豆”。即输入“X”、输出“X”。

这里的“X”可能包含水文数据、健康报告、设备监测数值、设计推演等不同样式的专业数据。

它能基于音乐厅的几何模型和房间数据,从声源发射5000Hz频率射线,生成射线分布图,找到听觉最佳的音源摆放位置。

图片

如何预测“X”?

所以,这些能预测下一个X的行业大模型,如何构建出来?

通过刚刚发布的先知AIOS 5.0。其核心特点是基于各行各业场景的X模态数据,构建行业基座大模型。

解决了当前行业大模型只能将行业文本数据喂给大语言模型、生成下一个字的问题,让大模型能来到的领域更加广泛。

图片

先知是AI公司第四范式的核心产品。2015年,先知AIOS 1.0版本首次发布,通过高维、实时、自学习框架提升模型精度;2017年,先知AIOS 2.0版本利用自动建模工具HyperCycle,降低模型开发门槛;2020年发布的先知AIOS 3.0版本规范AI数据治理和上线投产;2022年,先知AIOS 4.0版本引入北极星指标,更大化发挥AI应用价值。

AIOS 5.0版本则从生成式AI+行业这一角度出发,给行业大模型提出了一种新思路。

而在公认的大模型应用落地元年里,行业大模型的发展和影响一定是此前的数倍。这种更具规模化的动向,由此也形成了AIGC趋势的下一个范式。

One More Thing:AIGC迈向新范式?

从图片、文字、视频,再到健康、水利……我们不难看出AIGC现在正以迅猛的速度朝着AI生成一切的方向飞奔。

通常来说,一切事物的发展似乎都需要一些范式来推动,而且不是新范式取代旧范式,而是它们之间互补使其更加深入和全面。

正如科学研究中的四种范式一般,即实验归纳、理论推演、计算机仿真和数据密集型科学发现,它们相互补充,共同推动了科学研究的进步。

那么若是以这种逻辑来看待AIGC,似乎类似的四种范式也已经开始出现。

AIGC的第一范式以文本生成为核心,通过智能客服、内容续写等应用,展示了AI在理解和生成自然语言方面的能力。这一阶段的AIGC技术,为后续的发展奠定了基础,使得机器能够与人类进行有效的交流和互动。

AIGC的第二范式将应用领域扩展到了图像生成

如生成对抗网络(GAN)、变分自编码器(VAE)等,可以学习从随机噪声生成逼真图像的映射。并能将输出结果用于艺术创作、图像增强、虚拟场景生成等领域。这一范式进一步展现了AI的想象力。

AIGC的第三范式则是聚焦在了视频生成,例如Gen2,例如Sora。

视频生成一定程度上反映了AI对于世界的理解。从Sora诞生以来,能否理解世界?是否是世界模拟器的说法一直争论不休。因为如果确定Sora可以理解世界,将意味着AGI大门正式开启。

图片

而AIGC的第四范式,就是以行业为主,技术将全面渗透到各个行业之中。

这一阶段的核心任务是将AI技术与行业知识深度融合。今年作为大模型应用落地的元年,我们看到AIGC技术开始在医疗、教育、金融等关键领域发挥重要作用。

具体怎么做才能更快推进AIGC扎入行业?各路玩家都还在不断尝试中。以大语言模型为底座?还是直接训练行业大模型?不同路线都有各自的底层逻辑,谁的路线更能跑通,还言之过早。

但可以确定的是——

在AI生成一切的进程中,那些能够率先利用AI技术的个人和行业,将能够更早地享受到技术带来的红利。他们将有机会引领行业变革,塑造未来的社会和经济格局。

而且也只有AIGC进入到了第四范式,才意味着完成了技术创新到商业创业的飞轮转换,意味着生成式AI开启新质生产力变革

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2906381.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

测开——测试用例设计题

1.测试手机的短信功能需要考虑哪些测试点? 考测试思维 是否能正常打开或进入短信界面短信可以正常编辑、修改、删除短信可以正常发送、接收短信页面的字体、颜色显示是否正常【UI界面 手机设置了字体颜色 大小是否同步】短信的字体是否能够调整同时给多个人发短信…

工业测试测量仪器与人工智能(AI)如何结合

工业测试测量仪器与人工智能(AI)的结合可以通过多种方式实现,其中一些主要方法包括: 1. 数据分析和预测 智能数据分析:利用AI算法对从传感器和测试仪器收集的数据进行分析,识别模式、趋势和异常&#xff0…

vue+elementUI搭建动态表头的表格

前提:以下代码是vue2项目结合elementUi完成的 数据结构 后端传来的数据是两个list,一个表头的list,一个表格内容的list // 表头 headTableAtts: [{ columnLabel: 姓名, columnName: name },{ columnLabel: 年龄, columnName: age },{ colu…

ensp中pc机访问不同网络的服务器

拓扑图如下,资源已上传 说明:pc通过2个路由访问server服务器 三条线路分别是192.168.1.0网段,192.168.2.0网段和192.168.3.0网段,在未配置的情况下,pc设备是访问不到server的 具体操作流程 第一;pc设备…

简单了解原型模式

什么是原型模式 区别于单例模式,原型模式的一个类可以有多个实例化的对象。 原型模式通过拷贝来产生新的对象,而不是new,并且可以根据自己的需求修改对象的属性。 实现Cloneable接口实现拷贝 而拷贝又分为浅拷贝和深拷贝,两者在…

python的神奇bug2

今天测试出一个很诡异的bug, 这个错误还真的很难发现 测试1 a [1,10,100] for i in a:print(i)if(i10):a[20,30,-1]一般来说我们在进行迭代时,a这个值时不能改动的,但是现在的问题时如果我不小心给改动了呢,结果如下 也就是说…

【数据结构刷题专题】—— 二分查找

二分查找 二分查找模板题&#xff1a;704. 二分查找 二分查找前提&#xff1a; 有序数组数组中无重复元素 左闭右闭&#xff1a; class Solution { public:int search(vector<int>& nums, int target) {int left 0;int right nums.size() - 1;while (left <…

基于unbantu的nginx的配置

目录 前言: 1.安装nginx并进行测试 1.1使用nginx -v 命令查看版本 1.2开启服务 查看端口 1.3测试 2.nginx的静态资源访问配置 2.1创建静态资源存放的目录 2.2写入目录中测试文件对应的内容 2.3修改配置文件 2.4 测试 3.虚拟主机配置 3.1创建目录 3.2写入测试…

SOLIDWORKS 2024 推荐硬件:开箱即用的配置以及升级优化的SOLIDWORKS硬件

SOLIDWORKS 2024已于2023年年末发布&#xff0c;使用SOLIDWORKS 2024的用户关注的问题之一就是&#xff1a;适合SOLIDWORKS2024这个版本的最佳硬件是什么&#xff1f; 这篇文章&#xff0c;硕迪科技将推荐SOLIDWORKS 2024的开箱即用的解决方案以及各个硬件的配置要求。 这些建议…

JavaEE 初阶篇-深入了解多线程等待与多线程状态

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 线程等待 1.1 线程等待 - join() 方法 1.1.1 main 线程中等待多个线程 1.1.2 main 线程等待 t2 线程且t2 线程等待 t1 线程 1.1.3 其他线程阻塞等待 main 线程 1.…

机器学习概论—增强学习

机器学习概论—增强学习 强化学习(Reinforcement Learning, RL)或者说是增强学习,是机器学习的一个领域,旨在使智能体通过与环境的交互学习如何做出决策,它是关于在特定情况下采取适当的行动来最大化奖励。它被各种软件和机器用来寻找在特定情况下应采取的最佳行为或路径…

在.Net6中用gdal实现第一个功能

目录 一、创建.NET6的控制台应用程序 二、加载Gdal插件 三、编写程序 一、创建.NET6的控制台应用程序 二、加载Gdal插件 Gdal的资源可以经过NuGet包引入。右键单击项目名称&#xff0c;然后选择 "Manage NuGet Packages"&#xff08;管理 NuGet 包&#xff09;。N…

视频素材免费哪个好?7个视频素材下载网站推荐

小伙帮们准备做视频的时候才发现&#xff0c;哎呀&#xff0c;高清视频素材哪里找啊&#xff1f;不用急&#xff0c;这次我们依旧从中国的宝藏网站开始&#xff0c;然后穿越全球&#xff0c;发现更多精彩的无水印视频素材网站 1&#xff0c;蛙学府&#xff08;中国&#xff09…

辅助驾驶-ACC

自适应巡航&#xff08;ACC&#xff09;使汽车能够自动调整自身速度与前车保持安全的行驶距离。 从整车系统层面考虑&#xff0c; ACC 是一个多种控制单元联合参与才能实现的功能。在这个系统中&#xff0c;雷达或者摄像头除了作为传感器提供目标车信息&#xff0c;核心的 ACC …

Postman中参数填写方式!

Postman中参数填写和请求方法有关&#xff0c;一般接口用例请求方法GET与POST常用&#xff0c;所以主要是这两种请求方法请求参数填写 一、GET请求方法参数填写 1、直接在URL中填写请求参数,如直接在URL中填写&#xff1a; http://www.example.com:8089/userapi?unamelisi&…

蓝桥杯练习题 近似GCD 双指针

题目 小蓝有一个长度为 n 的数组 4 (a1, a2,,an),数组的了数组被定义为从 原数组中选出连续的一个或多个元素组成的数组。数组的最大公约数指的是数 组中所有元素的最大公约数。 如果最多更改数组中的一个元素之后,数组的最大公约数为 g,那么称 g 为这个数组的近似GCD。 一个数…

大数据做「AI大模型」数据清洗调优基础篇

关于本文 近期一直在协助做AI大模型数据清洗调优的工作&#xff0c;主要就是使用大数据计算引擎Spark做一些原始数据的清洗工作&#xff0c;整体数据量大约6PB-8PB之间&#xff0c;那么对于整个大数据量的处理性能将是一个重大的挑战&#xff0c;关于具体的调优参数配置项暂时不…

13-API风格(下):RPCAPI介绍

RPC在Go项目开发中用得也非常多&#xff0c;需要我们认真掌握。 RPC介绍 根据维基百科的定义&#xff0c;RPC&#xff08;Remote Procedure Call&#xff09;&#xff0c;即远程过程调用&#xff0c;是一个计算机通信协议。该协议允许运行于一台计算机的程序调用另一台计算机…

1.5-数组-059. 螺旋矩阵 II★★

59. 螺旋矩阵II ★★ 力扣题目链接&#xff0c;给你一个正整数 n &#xff0c;生成一个包含 1 到 n 2 n^2 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。1 < n < 20 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[[1,…

mp4转rmvb怎么转?超快的方法分享!

RMVB&#xff08;RealMediaVariableBitrate&#xff09;是由RealNetworks公司推出的一种视频文件格式。相较于其他视频格式&#xff0c;RMVB以其高度压缩和可变比特率的特性而著称。它常被用于网络视频传输&#xff0c;适用于带宽有限或网络环境较差的情况。 RMVB文件格式的特性…