pytorch 入门基础知识一(Pytorch 01)

一 深度学习基础相关

深度学习三个主要的方向:计算机视觉,自然语言,语音识别

机器学习核心组件:1 数据集(data),2 前向传播的model(net),3 目标函数(loss), 4 调整模型参数和优化函数的算法(adam)。

数据集:用于模型训练的数据。

模型:用于前向传播计算的model, 其中涉及各种复杂的网络,Alexnet, CNN等都属于这个模块的内容,对于传统模型,常规使用公式计算结果的公式其实就是模型的一种,模型主要作用是通过记录的参数计算想要的目标值。

目标函数:常用的均方误差,平方误差都是,目标函数的一直,用于评估预测值和实际结果的偏差。

优化算法:深度学习常用的梯度下降算法,在训练模型参数时用于减小损失误差。

不管是回归还是分类问题其实都是监督学习的内容,就是在训练模型是有一个目标值,而聚类算法,对抗性网络等属于无监督学习。

强化学习更考虑与环境的互动,在实际环境中根据实际结果做反馈实时修正模型。

PS:机器学习很吃数据,如果数据量不够,可能得考虑传统方法,比如之前遇到的一个项目,训练数据不够,属于前期就介入,根本没太多历史数据,不能够拟合出正确应对实际场景的应用,最后使用传统反馈调整的模式解决了问题,做视觉其实也遇到了这个问题,异常数据太少,而且不是很普遍,还是考虑传统方式处理,起码稳定。

计算机算力确实发生了很大的变化,近两年还是风云突变:

二 pytorch 基础操作

2.1 数据生成 (pytorch叫张量)

import torch
import torchvisionx = torch.arange(12)
x   # tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

 查看数据形状:

x.shape# torch.Size([12])

查看张量的总数据量:

x.numel()   # 矩阵元素数量  # 12

调整张量的形状:

X = x.reshape(3, 4)
X
# tensor([[ 0,  1,  2,  3],
#         [ 4,  5,  6,  7],
#         [ 8,  9, 10, 11]])

生成指定形状的数组:

torch.zeros((2, 3, 4))
# tensor([[[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]],#         [[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]]])

指定形状数据为1的张量:

torch.ones((2, 3, 4))
# tensor([[[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]],#         [[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]]])

正太分布的张量:

torch.randn(3, 4)
# tensor([[ 1.2365,  0.2051,  1.0180,  1.2629],
#         [-1.2494, -0.3436, -0.7135, -2.0160],
#         [-1.2806,  1.5036, -0.2523, -0.1456]])

直接将列表转换为tensor张量:

torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
# tensor([[2, 1, 4, 3],
#         [1, 2, 3, 4],
#         [4, 3, 2, 1]])

2.2 pytorch 运算符

可以直接 + - * /:

x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y # **运算符是求幂运算
# (tensor([ 3.,  4.,  6., 10.]),
#  tensor([-1.,  0.,  2.,  6.]),
#  tensor([ 2.,  4.,  8., 16.]),
#  tensor([0.5000, 1.0000, 2.0000, 4.0000]),
#  tensor([ 1.,  4., 16., 64.]))

求幂:

torch.exp(x)   # e^x
# tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])

张量拼接,通过dim指定行还是列拼接:

X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)
# (tensor([[ 0.,  1.,  2.,  3.],
#          [ 4.,  5.,  6.,  7.],
#          [ 8.,  9., 10., 11.],
#          [ 2.,  1.,  4.,  3.],
#          [ 1.,  2.,  3.,  4.],
#          [ 4.,  3.,  2.,  1.]]),
#  tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],
#          [ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],
#          [ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]]))

逻辑运算:

X == Y
# tensor([[False,  True, False,  True],
#         [False, False, False, False],
#         [False, False, False, False]])

所有元素求和:

X.sum()
# tensor(66.)

2.3 广播机制

a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
# (tensor([[0],
#          [1],
#          [2]]),
#  tensor([[0, 1]]))

自动广播:

a + b
# tensor([[0, 1],
#         [1, 2],
#         [2, 3]])

2.4 索引和切片

张量切片:

X = torch.arange(12, dtype=torch.float32).reshape((3,4))
X[-1], X[1:3]
# (tensor([ 8.,  9., 10., 11.]),
#  tensor([[ 4.,  5.,  6.,  7.],
#          [ 8.,  9., 10., 11.]]))

指定位置写入数据:

X[1, 2] = 9
X
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  9.,  7.],
#         [ 8.,  9., 10., 11.]])

同时写入多个值:

X[0:2, :] = 12
X
# tensor([[12., 12., 12., 12.],
#         [12., 12., 12., 12.],
#         [ 8.,  9., 10., 11.]])

2.5 原地更新参数

查看内存地址:

before = id(Y)
Y = Y + X
id(Y) == before
# False

张量原地更新:

Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
# id(Z): 2385633027792
# id(Z): 2385633027792

也可以直接写入原地址:

before = id(X)
X += Y
id(X) == before
# True

2.6 转换为python其他数据类型

numpy转换, torch.tensor() :

A = X.numpy()
B = torch.tensor(A)
type(A), type(B)
# (numpy.ndarray, torch.Tensor)

直接转换,a.item() 用于获取张量(Tensor)中单个元素 的值:

a = torch.tensor([3.5])
a, a.item(), float(a), int(a)
# (tensor([3.5000]), 3.5, 3.5, 3)

三 数据预处理

3.1 读取数据集

创建数据写入 house_tiny.csv 文件:

import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA,Pave,127500\n') # 每行表示一个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')

pd.read_csv() 读取数据:

import pandas as pd
data = pd.read_csv(data_file)
print(data)
#    NumRooms Alley   Price
# 0       NaN  Pave  127500
# 1       2.0   NaN  106000
# 2       4.0   NaN  178100
# 3       NaN   NaN  140000

3.2 处理缺失值

第一列均值填充:

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# 使用均值填充第一列的缺失值
inputs.iloc[:, 0] = inputs.iloc[:, 0].fillna(inputs.iloc[:, 0].mean())
print(inputs)
#    NumRooms Alley
# 0       3.0  Pave
# 1       2.0   NaN
# 2       4.0   NaN
# 3       3.0   NaN

第二列独热编码:

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
#    NumRooms  Alley_Pave  Alley_nan
# 0       3.0        True      False
# 1       2.0       False       True
# 2       4.0       False       True
# 3       3.0       False       True

数据格式转换为张量:

import torch
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y
# (tensor([[3., 1., 0.],
#          [2., 0., 1.],
#          [4., 0., 1.],
#          [3., 0., 1.]], dtype=torch.float64),
#  tensor([127500., 106000., 178100., 140000.], dtype=torch.float64))

四 线性代数

标量

import torch
x = torch.tensor(3.0)
y = torch.tensor(2.0)
x + y, x * y, x / y, x**y
# (tensor(5.), tensor(6.), tensor(1.5000), tensor(9.))

向量可以被视为标量值组成的列表:

x = torch.arange(4)
x
# tensor([0, 1, 2, 3])

下标 取元素:

x[3]
# tensor(3)

向量 长度

len(x)
# 4

张量形状

x.shape
# torch.Size([4])

4.1 矩阵

向量将标量从零阶推广到一阶,矩阵将向量从一阶推广到二阶

A = torch.arange(20).reshape(5, 4)
A
# tensor([[ 0,  1,  2,  3],
#         [ 4,  5,  6,  7],
#         [ 8,  9, 10, 11],
#         [12, 13, 14, 15],
#         [16, 17, 18, 19]])

矩阵转置

A.T
# tensor([[ 0,  4,  8, 12, 16],
#         [ 1,  5,  9, 13, 17],
#         [ 2,  6, 10, 14, 18],
#         [ 3,  7, 11, 15, 19]])

对称矩阵,一个矩阵和它的转置矩阵一样的时候该矩阵为对称矩阵:

B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
# tensor([[1, 2, 3],
#         [2, 0, 4],
#         [3, 4, 5]])
B == B.T
# tensor([[True, True, True],
#         [True, True, True],
#         [True, True, True]])

4.2 张量

张量是一个更广泛的概念,可以包括标量、向量以及更高维度的数组。

X = torch.arange(24).reshape(2, 3, 4)
X
# tensor([[[ 0,  1,  2,  3],
#          [ 4,  5,  6,  7],
#          [ 8,  9, 10, 11]],#         [[12, 13, 14, 15],
#          [16, 17, 18, 19],
#          [20, 21, 22, 23]]])

4.3 张量算法的基本性质

给定具有相同形 状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量。例如,将两个相同形状的矩阵相加, 会在这两个矩阵上执行元素加法,张量形状不变

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone() # 通过分配新内存,将A的一个副本分配给B
A, A + B
# (tensor([[ 0.,  1.,  2.,  3.],
#          [ 4.,  5.,  6.,  7.],
#          [ 8.,  9., 10., 11.],
#          [12., 13., 14., 15.],
#          [16., 17., 18., 19.]]),
#  tensor([[ 0.,  2.,  4.,  6.],
#          [ 8., 10., 12., 14.],
#          [16., 18., 20., 22.],
#          [24., 26., 28., 30.],
#          [32., 34., 36., 38.]]))
A * B
# tensor([[  0.,   1.,   4.,   9.],
#         [ 16.,  25.,  36.,  49.],
#         [ 64.,  81., 100., 121.],
#         [144., 169., 196., 225.],
#         [256., 289., 324., 361.]])

张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘,广播机制

a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
# (tensor([[[ 2,  3,  4,  5],
#           [ 6,  7,  8,  9],
#           [10, 11, 12, 13]],#          [[14, 15, 16, 17],
#           [18, 19, 20, 21],
#           [22, 23, 24, 25]]]),
#  torch.Size([2, 3, 4]))

4.4 降维

x = torch.arange(4, dtype=torch.float32)
x, x.sum()
# (tensor([0., 1., 2., 3.]), tensor(6.))

 sum() 可以对所有元素求和,算预测结果损失和有用

A.shape, A.sum()
# (torch.Size([5, 4]), tensor(190.))

axis 指定张量降维维度

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
# (tensor([40., 45., 50., 55.]), torch.Size([4]))
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
# (tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))
A.sum(axis=[0, 1]) # 结果和A.sum()相同
# tensor(190.)

求所有元素均值

A.mean(), A.sum() / A.numel()
# (tensor(9.5000), tensor(9.5000))

指定维度均值

A.mean(axis=0), A.sum(axis=0) / A.shape[0]
# (tensor([ 8.,  9., 10., 11.]), tensor([ 8.,  9., 10., 11.]))

非降维求和

sum_A = A.sum(axis=1, keepdims=True)
sum_A
# # tensor([[ 6.],
#         [22.],
#         [38.],
#         [54.],
#         [70.]])

 由于sum_A在对每行进行求和后仍保持两个轴,我们可以通过广播将A除以sum_A,求该行每个元素的占比

A / sum_A
# tensor([[0.0000, 0.1667, 0.3333, 0.5000],
#         [0.1818, 0.2273, 0.2727, 0.3182],
#         [0.2105, 0.2368, 0.2632, 0.2895],
#         [0.2222, 0.2407, 0.2593, 0.2778],
#         [0.2286, 0.2429, 0.2571, 0.2714]])

沿某个轴计算A元素的累积总和,比如axis=0(按行计算),可以调用cumsum函数。

print(A)
A.cumsum(axis=0)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  6.,  8., 10.],
#         [12., 15., 18., 21.],
#         [24., 28., 32., 36.],
#         [40., 45., 50., 55.]])

4.5 点积

深度学习中线性模型在 前向传播中使用的就是点积

x = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)
# (tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))

可以通过执行按元素乘法,然后进行求和来表示两个向量的点积

torch.sum(x * y)
# tensor(6.)

矩阵向量积,结果是一个新的向量,A的列维数(沿轴1的长度)必须与x的维数(其长度)相同:

print(A)
print(x)
A.shape, x.shape, torch.mv(A, x)
# tensor([[ 0.,  1.,  2.,  3.],
#         [ 4.,  5.,  6.,  7.],
#         [ 8.,  9., 10., 11.],
#         [12., 13., 14., 15.],
#         [16., 17., 18., 19.]])
# tensor([0., 1., 2., 3.])
# (torch.Size([5, 4]), torch.Size([4]), tensor([ 14.,  38.,  62.,  86., 110.]))

矩阵-矩阵乘法,torch.mm 用于计算两个矩阵的乘积

B = torch.ones(4, 3)
A, B, torch.mm(A, B)
# (tensor([[ 0.,  1.,  2.,  3.],
#          [ 4.,  5.,  6.,  7.],
#          [ 8.,  9., 10., 11.],
#          [12., 13., 14., 15.],
#          [16., 17., 18., 19.]]),
#  tensor([[1., 1., 1.],
#          [1., 1., 1.],
#          [1., 1., 1.],
#          [1., 1., 1.]]),
#  tensor([[ 6.,  6.,  6.],
#          [22., 22., 22.],
#          [38., 38., 38.],
#          [54., 54., 54.],
#          [70., 70., 70.]]))

4.6 范数

欧几里得距离是一个L2范数,向量元素平方和的平方根

u = torch.tensor([3.0, -4.0])
torch.norm(u)
# tensor(5.)

L1范数,我们将元素绝对值求和 组合起来:

torch.abs(u).sum()
# tensor(7.)

Frobenius范数 满足向量范数的所有性质,它就像是 矩阵形向量的L2范数

n = torch.ones((4, 9))
n, torch.norm(n)
# (tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.],
#          [1., 1., 1., 1., 1., 1., 1., 1., 1.],
#          [1., 1., 1., 1., 1., 1., 1., 1., 1.],
#          [1., 1., 1., 1., 1., 1., 1., 1., 1.]]),
#  tensor(6.))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2869129.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

C#混淆心得

C#混淆心得 近期遇到混淆C#代码的需求,在网上找了很多办法,在此记录一下。 混淆的本质就是让代码变丑,让别人看不懂。 为什么要混淆: 1.保护核心代码 可以在一定程度上避免别人偷代码,从而保护重要的部分&#xf…

vscode jupyter 如何关闭声音

网上之前搜的zen模式失败 仅仅降低sound失败 #以下是成功方式: 首先确保user和remote的声音都是0: 然后把user和remote的以下设置都设置为off就行了! 具体操作参考 https://stackoverflow.com/questions/54173462/how-to-turn-off-or-on-so…

传输层/UDP/TCP协议

再谈端口号 TCP/IP协议用“源IP”,“源端口号”,“目的IP”,“目的端口号”,“协议号”,这样一个五元组来标识一个通信(可以用netstat -n来查看)。 端口号的划分和知名端口号 我们之前就说过&am…

综合知识篇05-设计模式考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html案例分析篇00-【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例…

【Java】容器|Set、List、Map及常用API

目录 一、概述 二、List 1、List的常用API 2、ArrayList 3、List遍历 三、Set 1、Set的常用方法: 2、HashSet 3、遍历集合: 四、Map 1、Map常用API 2、HashMap 3、遍历Map 五、迭代器 一、概述 在Java中所有的容器都属于Collection接口下的内容 1…

如何监控用户对网站的操作行为?

需求: 1、对所有用户的操作进行监控,包括用户行为的录制 2、通过用户操作热度地图,来监控每个功能的使用频率,从而来决策产品的下一步迭代 一、浏览器自带的录频方法 MediaDevices.getUserMedia() 二、html2canvas页面截屏方法 …

2022年安徽省职业院校技能大赛 (高职组)“云计算”赛项样卷

#需要资源或有问题的,可私博主!!! #需要资源或有问题的,可私博主!!! #需要资源或有问题的,可私博主!!! 第一场次:私有云(5…

cool 中的Midway ----node.js的TypeORM的使用

1.介绍 TypeORM | Midway TypeORM 是 node.js 现有社区最成熟的对象关系映射器(ORM )。本文介绍如何在 Midway 中使用 TypeORM 相关信息: 描述可用于标准项目✅可用于 Serverless✅可用于一体化✅包含独立主框架❌包含独立日志❌ 和老写…

展开说说:Android之SharedPreferences

SharedPreferences 是一种轻量级的数据持久化存储机制。以key/value键值对形式存储在xml文件,用于保存一些应用程序数据。保存在 /data/data/PACKAGE_NAME/shared_prefs/xxx.Xml文件。 SharedPreferences 只能存储string,int,float&#xff…

F5怎么样?保障AI服务的安全性和交付

伴随着人工智能时代的快速发展,AI已成为企业数字化转型的得力工具,比如为用户提供更好的服务,降低企业成本等。与此同时,AI技术的应用也会带来应用安全等方面的新风险,可见其有着双刃剑效应。作为一家提供多云应用安全…

【时事篇-05-03】20240316 一笔145元拆分成3笔存款存入(排除有相似性的十位数字)

背景需求 前文提到,每笔都存一样的数目,容易被银行识别违法, 【时事篇-05-01】20240112 150元存46只货币基金-CSDN博客文章浏览阅读580次,点赞15次,收藏11次。【时事篇-05-01】20240112 150元存46只货币基金https://…

LCD屏的应用

一、LCD屏应用 Linux下一切皆文件,我们的LCD屏再系统中也是一个文件,设备文件:/dev/fb0。 如果要在LCD屏显示数据,那我们就可以把数据写入LCD屏的设备文件。 1.显示颜色块 LCD屏分辨:800*480 像素 32位:说明一个像…

创新指南|制药行业如何拥抱生成式AI在新药发现与开发中突破获益

生成式AI在药物发现中的应用可加速药物研发过程,并可能降低成本。通过利用GenAI,制药公司能在早期药物发现和开发中实现更快的成果,这包括从目标识别、验证,到优化的多个环节。 AI有潜力在药物筛选和优先排序、目标识别及验证、药…

书客护眼落地灯销量火爆,售罄、补货、又断货、再补货!又成断货王!

今日,备受关注的书客Sun护眼大路灯在市场上掀起了一股抢购热潮,作为近年来照明领域中最大的黑马品牌,始终坚持并最求技术创新的书客品牌,在近日发布全新系列落地护眼台灯后,不仅备受消费者青睐,更是成为了新…

spacy进行简单的自然语言处理的学习

自然语言处理基本概念 概念:自然语言处理,是让机器理解人的语言的过程。 作用:通过使用自然语言处理,机器可以理解人的语言,从而进行语义分析,例如:从一句话中判断喜怒哀乐;从一段文…

MongoDB——linux中yum命令安装及配置

一、创建mongodb-org-3.4.repo文件 vi /etc/yum.repos.d/mongodb-org-3.4.repo 将下面内容添加到创建的文件中 [mongodb-org-3.4] nameMongoDB Repository baseurlhttps://repo.mongodb.org/yum/amazon/2013.03/mongodb-org/3.4/x86_64/ gpgcheck1 enabled1 gpgkeyhttps://www…

【Docker篇】自定义Dockerfile的操作

文章目录 🍔镜像结构🛸什么是Dockerfile⭐基于Ubuntu镜像构建一个新镜像,运行一个java项目🔎使用 java:8-alpine 🍔镜像结构 镜像是将应用程序及其需要的系统函数库、环境、配置、依赖打包而成。 我们以MySQL为例&am…

【PyTorch】基础学习:在终端中打印当前虚拟环境下的Pytorch版本信息

【PyTorch】基础学习:在终端中打印或查看当前虚拟环境下的Pytorch版本信息 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程…

固定资产管理系统:井然有序,提升利用率,降损增值的解决之道。

固定资产管理系统是一种用于管理和跟踪组织内固定资产的软件系统。固定资产是指组织长期持有并用于生产、运营或提供服务的资产,例如土地、建筑物、机器设备、车辆等。 固定资产管理系统提供了一种集中管理和监控固定资产的方式,帮助组织更好地管理其资产…

Mock.js了解(Mock就是模拟一个后端,Postman模拟前端)

JSON5 Node.js Vue CLI与Mock.js Jquery与Mock.js Mock与分页