一文全面了解向量数据库

1. 什么是向量数据库?**

首先,我们需要理解什么是向量?

向量是基于不同特征或属性来描述对象的数据表示。每个向量代表一个单独的数据点,例如一个词或一张图片,由描述其许多特性的值的集合组成。这些变量有时被称为“特征”或“维度”。例如,一张图片可以表示为像素值的向量,整个句子也可以表示为单词嵌入的向量。

一些常用的数据向量如下:

  • 图像向量,通过深度学习模型提取的图像特征向量,这些特征向量捕捉了图像的重要信息,如颜色、形状、纹理等,可以用于图像识别、检索等任务;
  • 文本向量,通过词嵌入技术如Word2Vec、BERT等生成的文本特征向量,这些向量包含了文本的语义信息,可以用于文本分类、情感分析等任务;
  • 语音向量,通过声学模型从声音信号中提取的特征向量,这些向量捕捉了声音的重要特性,如音调、节奏、音色等,可以用于语音识别、声纹识别等任务。

向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,维度可以从几十到几千不等。向量通常是通过对原始数据(如文本、图像、音频、视频等)应用某种变换或嵌入函数来生成的。嵌入函数可以基于各种方法,例如机器学习模型、单词嵌入、特征提取算法。向量数据库采用索引策略来简化向量相似的特定查询。这在机器学习应用程序中特别有用,因为相似性搜索经常用于发现可比较的数据点或生成建议。

向量数据库的主要功能包括:

  • 管理:向量数据库以原始数据形式处理数据,能够有效地组织和管理数据,便于AI模型应用。
  • 存储:能够存储向量数据,包括各种AI模型需要使用到的高维数据。
  • 检索:向量数据库特别擅长高效地检索数据,这一个特点能够确保AI模型在需要的时候快速获得所需的数据。这也是向量数据库能够在一些推荐系统或者检索系统中得到应用的重要原因。

向量数据库的主要优点是,它允许基于数据的向量距离或相似性进行快速准确的相似性搜索和检索。这意味着,可以使用向量数据库,根据其语义或上下文含义查找最相似或最相关的数据,而不是使用基于精确匹配或预定义标准查询数据库的传统方法。向量数据库可以搜索非结构化数据,但也可以处理半结构化甚至结构化数据。例如,可以使用向量数据库执行以下操作,根据视觉内容和风格查找与给定图像相似的图像,根据主题和情感查找与给定文档相似的文档,以及根据功能和评级查找与给定产品相似的产品。

2. 向量数据库的工作机理

向量数据库的构建是为了适应向量嵌入的特定结构,并且它们使用索引算法根据向量与查询向量的相似性来有效地搜索和检索向量。

向量数据库的工作原理可以通过CPU和GPU的工作原理进行类比。CPU和GPU分别是计算机的运算和图形处理核心,而向量数据库则是大模型的记忆和存储核心。在大模型学习阶段,向量数据库接收多模态数据进行向量化表示,让大模型在训练时能够更高效地调用和处理数据。通过多线程机制和矩阵运算,GPU提供了强大的计算能力,让大模型的训练变得更加快速和高效。

区别于传统数据库,向量数据库主要有三点不同:数据向量化,向量检索和相似度计算。数据的向量化采用embedding 技术, 嵌入作为一个桥梁,将非数字数据转换为机器学习模型可以使用的形式,使它们能够更有效地识别数据中的模式和关系。一般的,文本是一维向量,图像是二维矩阵,视频相当于三维矩阵。这些嵌入实质上是存储数据的上下文表示的数字列表(即向量)。在存储层内,数据库以m个向量堆栈的形式存储,每个向量使用n个维度表示一个数据点,总大小为m×n。为了查询性能的原因,这些堆栈通常通过分片进行划分。

向量检索是输入一个向量,从数据库中查找与输入向量最相似的topN个向量返回。要在向量数据库中执行相似性搜索和检索,需要使用表示所需信息或条件的查询向量。查询向量可以从与存储向量相同类型的数据导出,或者从不同类型的数据导出。使用相似性度量来计算两个向量在向量空间中的距离。相似性度量可以基于各种度量,如余弦相似性、欧氏距离、向量内积,hamming距离、jaccard指数。

其中,向量检索算法是向量数据库的核心之一。向量检索可以看为是近似最近邻搜索,通过预先的索引构建来减小数据查询时的搜索空间,加快检索速度。目前主要的几种检索算法有:

  • 基于树的方法,例如KDTree和Annoy
  • 基于图的方法,例如HNSW
  • 基于乘积量化的方法,例如SQ和PQ
  • 基于哈希的方法,例如LSH
  • 基于倒排索引的方法

Vector Embeddings

对于传统数据库,搜索功能都是基于不同的索引方式(B Tree、倒排索引等)加上精确匹配和排序算法(BM25、TF-IDF)等实现的。本质还是基于文本的精确匹配,这种索引和搜索算法对于关键字的搜索功能非常合适,但对于语义搜索功能就非常弱。

例如,如果你搜索“小狗”,那么你只能得到带有“小狗”关键字相关的结果,而无法得到“柯基”、“金毛”等结果,因为“小狗”和“金毛”是不同的词,传统数据库无法识别它们的语义关系,所以传统的应用需要人为的将“小狗”和“金毛”等词之间打上特征标签进行关联,这样才能实现语义搜索。而如何将生成和挑选特征这个过程,也被称为 Feature Engineering (特征工程),它是将原始数据转化成更好的表达问题本质的特征的过程。

但是如果你需要处理非结构化的数据,就会发现非结构化数据的特征数量会开始快速膨胀,例如我们处理的是图像、音频、视频等数据,这个过程就变得非常困难。例如,对于图像,可以标注颜色、形状、纹理、边缘、对象、场景等特征,但是这些特征太多了,而且很难人为的进行标注,所以我们需要一种自动化的方式来提取这些特征,而这可以通过 Vector Embedding 实现。

Vector Embedding 是由 AI 模型(例如大型语言模型 LLM)生成的,它会根据不同的算法生成高维度的向量数据,代表着数据的不同特征,这些特征代表了数据的不同维度。例如,对于文本,这些特征可能包括词汇、语法、语义、情感、情绪、主题、上下文等。对于音频,这些特征可能包括音调、节奏、音高、音色、音量、语音、音乐等。

例如对于目前来说,文本向量可以通过 OpenAI 的 text-embedding-ada-002 模型生成,图像向量可以通过 clip-vit-base-patch32 模型生成,而音频向量可以通过 wav2vec2-base-960h 模型生成。这些向量都是通过 AI 模型生成的,所以它们都是具有语义信息的。

例如我们将这句话 “Your text string goes here” 用 text-embedding-ada-002 模型进行文本 Embedding,它会生成一个 1536 维的向量,得到的结果是这样:“-0.006929283495992422, -0.005336422007530928, ... -4547132266452536e-05,-0.024047505110502243”,它是一个长度为 1536 的数组。这个向量就包含了这句话的所有特征,这些特征包括词汇、语法,我们可以将它存入向量数据库中,以便我们后续进行语义搜索。

特征和向量

虽然向量数据库的核心在于相似性搜索(Similarity Search),但在深入了解相似性搜索前,我们需要先详细了解一下特征和向量的概念和原理。

我们先思考一个问题?为什么我们在生活中区分不同的物品和事物?

如果从理论角度出发,这是因为我们会通过识别不同事物之间不同的特征来识别种类,例如分别不同种类的小狗,就可以通过体型大小、毛发长度、鼻子长短等特征来区分。如下面这张照片按照体型排序,可以看到体型越大的狗越靠近坐标轴右边,这样就能得到一个体型特征的一维坐标和对应的数值,从 0 到 1 的数字中得到每只狗在坐标系中的位置。

Snipaste_2023-07-15_20-55-09

然而单靠一个体型大小的特征并不够,像照片中哈士奇、金毛和拉布拉多的体型就非常接近,我们无法区分。所以我们会继续观察其它的特征,例如毛发的长短。

Snipaste_2023-07-15_20-59-13

这样每只狗对应一个二维坐标点,我们就能轻易的将哈士奇、金毛和拉布拉多区分开来,如果这时仍然无法很好的区分德牧和罗威纳犬。我们就可以继续再从其它的特征区分,比如鼻子的长短,这样就能得到一个三维的坐标系和每只狗在三维坐标系中的位置。

在这种情况下,只要特征足够多,就能够将所有的狗区分开来,最后就能得到一个高维的坐标系,虽然我们想象不出高维坐标系长什么样,但是在数组中,我们只需要一直向数组中追加数字就可以了。

实际上,只要维度够多,我们就能够将所有的事物区分开来,世间万物都可以用一个多维坐标系来表示,它们都在一个高维的特征空间中对应着一个坐标点。

那这和相似性搜索 (Similarity Search) 有什么关系呢?你会发现在上面的二维坐标中,德牧和罗威纳犬的坐标就非常接近,这就意味着它们的特征也非常接近。我们都知道向量是具有大小和方向的数学结构,所以可以将这些特征用向量来表示,这样就能够通过计算向量之间的距离来判断它们的相似度,这就是相似性搜索

上面这几张图片和详细解释来源于这个视频,这个视频系列也包含了部分下方介绍的相似性搜索算法。如果你对这个向量数据库感兴趣,非常推荐看看这个视频。

相似性搜索 (Similarity Search)

既然我们知道了可以通过比较向量之间的距离来判断它们的相似度,那么如何将它应用到真实的场景中呢?如果想要在一个海量的数据中找到和某个向量最相似的向量,我们需要对数据库中的每个向量进行一次比较计算,但这样的计算量是非常巨大的,所以我们需要一种高效的算法来解决这个问题。

高效的搜索算法有很多,其主要思想是通过两种方式提高搜索效率:

  1. 减少向量大小——通过降维或减少表示向量值的长度。
  2. 缩小搜索范围——可以通过聚类或将向量组织成基于树形、图形结构来实现,并限制搜索范围仅在最接近的簇中进行,或者通过最相似的分支进行过滤。

我们首先来介绍一下大部分算法共有的核心概念,也就是聚类。

K-Means 和 Faiss

我们可以在保存向量数据后,先对向量数据先进行聚类。例如下图在二维坐标系中,划定了 4 个聚类中心,然后将每个向量分配到最近的聚类中心,经过聚类算法不断调整聚类中心位置,这样就可以将向量数据分成 4 个簇。每次搜索时,只需要先判断搜索向量属于哪个簇,然后再在这一个簇中进行搜索,这样就从 4 个簇的搜索范围减少到了 1 个簇,大大减少了搜索的范围。

kmeans

常见的聚类算法有 K-Means,它可以将数据分成 k 个类别,其中 k 是预先指定的。以下是 k-means 算法的基本步骤:

  1. 选择 k 个初始聚类中心。
  2. 将每个数据点分配到最近的聚类中心。
  3. 计算每个聚类的新中心。
  4. 重复步骤 2 和 3,直到聚类中心不再改变或达到最大迭代次数。

但是这种搜索方式也有一些缺点,例如在搜索的时候,如果搜索的内容正好处于两个分类区域的中间,就很有可能遗漏掉最相似的向量。

现实情况中,向量的分布也不会像图中一样区分的那么明显,往往区域的边界是相邻的,就像下图 Faiss 算法 一样。

我们可以将向量想象为包含在 Voronoi 单元格中 - 当引入一个新的查询向量时,首先测量其与质心 (centroids) 之间的距离,然后将搜索范围限制在该质心所在的单元格内。

WUjl5M

那么为了解决搜索时可能存在的遗漏问题,可以将搜索范围动态调整,例如当 nprobe = 1 时,只搜索最近的一个聚类中心,当 nprobe = 2 时,搜索最近的两个聚类中心,根据实际业务的需求调整 nprobe 的值。

FZadSG

实际上,除了暴力搜索能完美的搜索出最相邻,所有的搜索算法只能在速度和质量还有内存上做一个权衡,这些算法也被称为近似最相邻(Approximate Nearest Neighbor)。

Product Quantization (PQ)

在大规模数据集中,聚类算法最大的问题在于内存占用太大。这主要体现在两个方面,首先因为需要保存每个向量的坐标,而每个坐标都是一个浮点数,占用的内存就已经非常大了。除此之外,还需要维护聚类中心和每个向量的聚类中心索引,这也会占用大量的内存。

对于第一个问题,可以通过量化 (Quantization) 的方式解决,也就是常见的有损压缩。例如在内存中可以将聚类中心里面每一个向量都用聚类中心的向量来表示,并维护一个所有向量到聚类中心的码本,这样就能大大减少内存的占用。

但这仍然不能解决所有问题,在前面一个例子中,在二维坐标系中划分了聚类中心,同理,在高维坐标系中,也可以划定多个聚类中心点,不断调整和迭代,直到找到多个稳定和收敛的中心点。

但是在高维坐标系中,还会遇到维度灾难问题,具体来说,随着维度的增加,数据点之间的距离会呈指数级增长,这也就意味着,在高维坐标系中,需要更多的聚类中心点将数据点分成更小的簇,才能提高分类的质量。否者,向量和自己的聚类中心距离很远,会极大的降低搜索的速度和质量。

但如果想要维持分类和搜索质量,就需要维护数量庞大的聚类中心。随之而来会带来另一个问题,那就是聚类中心点的数量会随着维度的增加而指数级增长,这样会导致我们存储码本的数量极速增加,从而极大的增加了内存的消耗。例如一个 128 维的向量,需要维护 2^64 个聚类中心才能维持不错的量化结果,但这样的码本存储大小已经超过维护原始向量的内存大小了。

解决这个问题的方法是将向量分解为多个子向量,然后对每个子向量独立进行量化,比如将 128 维的向量分为 8 个 16 维的向量,然后在 8 个 16 维的子向量上分别进行聚类,因为 16 维的子向量大概只需要 256 个聚类中心就能得到还不错的量化结果,所以就可以将码本的大小从 2^64 降低到 8 * 256 = 2048 个聚类中心,从而降低内存开销。

5dAeV5

而将向量进行编码后,也将得到 8 个编码值,将它们拼起来就是该向量的最终编码值。等到使用的时候,只需要将这 8 个编码值,然后分别在 8 个子码本中搜索出对应的 16 维的向量,就能将它们使用笛卡尔积的方式组合成一个 128 维的向量,从而得到最终的搜索结果。这也就是乘积量化(Product Quantization)的原理。

使用 PQ 算法,可以显著的减少内存的开销,同时加快搜索的速度,它唯一的问题是搜索的质量会有所下降,但就像我们刚才所讲,所有算法都是在内存、速度和质量上做一个权衡。

Hierarchical Navigable Small Worlds (HNSW)

除了聚类以外,也可以通过构建树或者构建图的方式来实现近似最近邻搜索。这种方法的基本思想是每次将向量加到数据库中的时候,就先找到与它最相邻的向量,然后将它们连接起来,这样就构成了一个图。当需要搜索的时候,就可以从图中的某个节点开始,不断的进行最相邻搜索和最短路径计算,直到找到最相似的向量。

这种算法能保证搜索的质量,但是如果图中所以的节点都以最短的路径相连,如图中最下面的一层,那么在搜索的时候,就同样需要遍历所有的节点。

GD7ufK

解决这个问题的思路与常见的跳表算法相似,如下图要搜索跳表,从最高层开始,沿着具有最长“跳过”的边向右移动。如果发现当前节点的值大于要搜索的值-我们知道已经超过了目标,因此我们会在下一级中向前一个节点。

wOu6JL

HNSW 继承了相同的分层格式,最高层具有更长的边缘(用于快速搜索),而较低层具有较短的边缘(用于准确搜索)。

具体来说,可以将图分为多层,每一层都是一个小世界,图中的节点都是相互连接的。而且每一层的节点都会连接到上一层的节点,当需要搜索的时候,就可以从第一层开始,因为第一层的节点之间距离很长,可以减少搜索的时间,然后再逐层向下搜索,又因为最下层相似节点之间相互关联,所以可以保证搜索的质量,能够找到最相似的向量。

如果你对跳表和 HNSW 感兴趣,可以看看这个视频。

HNSW 算法是一种经典的空间换时间的算法,它的搜索质量和搜索速度都比较高,但是它的内存开销也比较大,因为不仅需要将所有的向量都存储在内存中。还需要维护一个图的结构,也同样需要存储。所以这类算法需要根据实际的场景来选择。

Locality Sensitive Hashing (LSH)

局部敏感哈希(Locality Sensitive Hashing)也是一种使用近似最近邻搜索的索引技术。它的特点是快速,同时仍然提供一个近似、非穷举的结果。LSH 使用一组哈希函数将相似向量映射到“桶”中,从而使相似向量具有相同的哈希值。这样,就可以通过比较哈希值来判断向量之间的相似度。

通常,我们设计的哈希算法都是力求减少哈希碰撞的次数,因为哈希函数的搜索时间复杂度是 O(1),但是,如果存在哈希碰撞,即两个不同的关键字被映射到同一个桶中,那么就需要使用链表等数据结构来解决冲突。在这种情况下,搜索的时间复杂度通常是 O(n),其中n是链表的长度。所以为了提高哈希函数的搜索的效率,通常会将哈希函数的碰撞概率尽可能的小。

但是在向量搜索中,我们的目的是为了找到相似的向量,所以可以专门设计一种哈希函数,使得哈希碰撞的概率尽可能高,并且位置越近或者越相似的向量越容易碰撞,这样相似的向量就会被映射到同一个桶中。

等搜索特定向量时,为了找到给定查询向量的最近邻居,使用相同的哈希函数将类似向量“分桶”到哈希表中。查询向量被散列到特定表中,然后与该表中的其他向量进行比较以找到最接近的匹配项。这种方法比搜索整个数据集要快得多,因为每个哈希表桶中的向量远少于整个空间中的向量数。

那么这个哈希函数应该如何设计呢?为了大家更好理解,我们先从二维坐标系解释,如下所图示,在二维坐标系中可以通过随机生成一条直线,将二维坐标系划分为两个区域,这样就可以通过判断向量是否在直线的同一边来判断它们是否相似。例如下图通过随机生成 4 条直线,这样就可以通过 4 个二进制数来表示一个向量的位置,例如 A 和 B 表示向量在同一个区域。

lsh1

这个原理很简单,如果两个向量的距离很近,那么它们在直线的同一边的概率就会很高,例如直线穿过 AC 的概率就远大于直线穿过 AB 的概率。所以 AB 在同一侧的概率就远大于 AC 在同一侧的概率。

当搜索一个向量时,将这个向量再次进行哈希函数计算,得到相同桶中的向量,然后再通过暴力搜索的方式,找到最接近的向量。如下图如果再搜索一个向量经过了哈希函数,得到了 0110 的值,就会直接找到和它同一个桶中相似的向量 D。从而大大减少了搜索的时间。

lsh

关于更多 LSH 算法的细节,可以参考这篇博客。

Random Projection for LSH 随机投影

如果在二维坐标系可以通过随机生成的直线区分相似性,那么同理,在三维坐标系中,就可以通过随机生成一个平面,将三维坐标系划分为两个区域。在多维坐标系中,同样可以通过随机生成一个超平面,将多维坐标系划分为两个区域,从而区分相似性。

但是在高维空间中,数据点之间的距离往往非常稀疏,数据点之间的距离会随着维度的增加呈指数级增长。导致计算出来的桶非常多,最极端的情况是每个桶中就一个向量,并且计算速度非常慢。所以实际上在实现 LSH 算法的时候,会考虑使用随机投影的方式,将高维空间的数据点投影到低维空间,从而减少计算的时间和提高查询的质量。

随机投影背后的基本思想是使用随机投影矩阵将高维向量投影到低维空间中。创建一个由随机数构成的矩阵,其大小将是所需的目标低维值。然后,计算输入向量和矩阵之间的点积,得到一个被投影的矩阵,它比原始向量具有更少的维度但仍保留了它们之间的相似性。

当我们查询时,使用相同的投影矩阵将查询向量投影到低维空间。然后,将投影的查询向量与数据库中的投影向量进行比较,以找到最近邻居。由于数据的维数降低了,搜索过程比在整个高维空间中搜索要快得多。

其基本步骤是:

  1. 从高维空间中随机选择一个超平面,将数据点投影到该超平面上。
  2. 重复步骤 1,选择多个超平面,将数据点投影到多个超平面上。
  3. 将多个超平面的投影结果组合成一个向量,作为低维空间中的表示。
  4. 使用哈希函数将低维空间中的向量映射到哈希桶中。

同样,随机投影也是一种近似方法,并且投影质量取决于投影矩阵。通常情况下,随机性越大的投影矩阵,其映射质量就越好。但是生成真正随机的投影矩阵可能会计算成本很高,特别是对于大型数据集来说。关于更多 RP for LSH 算法的细节,可以参考这篇博客。

相似性测量 (Similarity Measurement)

上面我们讨论了向量数据库的不同搜索算法,但是还没有讨论如何衡量相似性。在相似性搜索中,需要计算两个向量之间的距离,然后根据距离来判断它们的相似度。

而如何计算向量在高维空间的距离呢?有三种常见的向量相似度算法:欧几里德距离、余弦相似度和点积相似度。

欧几里得距离(Euclidean Distance)

欧几里得距离是指两个向量之间的距离,它的计算公式为:

�(�,�)=∑�=1�(��−��)2_d_(A,B)=i=1∑_n_​(_Ai_​−_Bi_​)2​

其中,�A 和 �B 分别表示两个向量,�_n_ 表示向量的维度。

KPhJ27

欧几里得距离算法的优点是可以反映向量的绝对距离,适用于需要考虑向量长度的相似性计算。例如推荐系统中,需要根据用户的历史行为来推荐相似的商品,这时就需要考虑用户的历史行为的数量,而不仅仅是用户的历史行为的相似度。

余弦相似度(Cosine Similarity)

余弦相似度是指两个向量之间的夹角余弦值,它的计算公式为:

cos⁡(�)=�⋅�∣�∣∣�∣cos(θ)=∣A∣∣B∣A⋅B​

其中,�A 和 �B 分别表示两个向量,⋅⋅ 表示向量的点积,∣�∣∣A∣ 和 ∣�∣∣B∣ 分别表示两个向量的模长。

fHLAfz

余弦相似度对向量的长度不敏感,只关注向量的方向,因此适用于高维向量的相似性计算。例如语义搜索和文档分类。

点积相似度 (Dot product Similarity)

向量的点积相似度是指两个向量之间的点积值,它的计算公式为:

�⋅�=∑�=1�����A⋅B=i=1∑_n_​_Ai_​_Bi_​

其中,�A 和 �B 分别表示两个向量,�_n_ 表示向量的维度。

kyA3AN

点积相似度算法的优点在于它简单易懂,计算速度快,并且兼顾了向量的长度和方向。它适用于许多实际场景,例如图像识别、语义搜索和文档分类等。但点积相似度算法对向量的长度敏感,因此在计算高维向量的相似性时可能会出现问题。

每一种相似性测量 (Similarity Measurement) 算法都有其优点和缺点,需要开发者根据自己的数据特征和业务场景来选择。

过滤 (Filtering)

在实际的业务场景中,往往不需要在整个向量数据库中进行相似性搜索,而是通过部分的业务字段进行过滤再进行查询。所以存储在数据库的向量往往还需要包含元数据,例如用户 ID、文档 ID 等信息。这样就可以在搜索的时候,根据元数据来过滤搜索结果,从而得到最终的结果。

为此,向量数据库通常维护两个索引:一个是向量索引,另一个是元数据索引。然后,在进行相似性搜索本身之前或之后执行元数据过滤,但无论哪种情况下,都存在导致查询过程变慢的困难。

VwZxFW

过滤过程可以在向量搜索本身之前或之后执行,但每种方法都有自己的挑战,可能会影响查询性能:

  • Pre-filtering:在向量搜索之前进行元数据过滤。虽然这可以帮助减少搜索空间,但也可能导致系统忽略与元数据筛选标准不匹配的相关结果。
  • Post-filtering:在向量搜索完成后进行元数据过滤。这可以确保考虑所有相关结果,在搜索完成后将不相关的结果进行筛选。

为了优化过滤流程,向量数据库使用各种技术,例如利用先进的索引方法来处理元数据或使用并行处理来加速过滤任务。平衡搜索性能和筛选精度之间的权衡对于提供高效且相关的向量数据库查询结果至关重要。

向量数据库选型

笔者在本文中,花费了大量的笔墨来介绍向量数据库的相似性搜索算法的原理和实现,相似性搜索算法固然是一个向量数据库的核心和关键点,但是在实际的业务场景中,往往还需要考虑其它的因素,例如向量数据库的可用性、扩展性、安全性等,还有代码是否开源、社区是否活跃等等。

分布式

一个成熟的向量数据库,往往需要支持分布式部署,这样才能满足大规模数据的存储和查询。数据拥有的越多,需要节点就越多,出现的错误和故障也就越多,所以分布式的向量数据库需要具备高可用性和容错性。

数据库的高可用性和容错性,往往需要实现分片和复制能力,在传统的数据库中,往往通过数据的主键或者根据业务需求进行分片,但是在分布式的向量数据库中,就需要考虑根据向量的相似性进行分区,以便查询的时候能够保证结果的质量和速度。

其它类似复制节点数据的一致性、数据的安全性等等,都是分布式向量数据库需要考虑的因素。

访问控制和备份

除此之外,访问控制设计的是否充足,例如当组织和业务快速发展时,是否能够快速的添加新的用户和权限控制,是否能够快速的添加新的节点,审计日志是否完善等等,都是需要考虑的因素。

另外,数据库的监控和备份也是一个重要的因素,当数据出现故障时,能够快速的定位问题和恢复数据,是一个成熟的向量数据库必须要考虑的因素。

API & SDK

对比上面的因素选择,API & SDK 可能是往往被忽略的因素,但是在实际的业务场景中,API & SDK 往往是开发者最关心的因素。因为 API & SDK 的设计直接影响了开发者的开发效率和使用体验。一个优秀良好的 API & SDK 设计,往往能够适应需求的不同变化,向量数据库是一个新的领域,在如今大部分人不太清楚这方面需求的当下,这一点容易被人忽视。

传统数据的扩展

除了选择专业的向量数据库,使用传统数据库进行扩展也是一种方法。类似 Redis 除了传统的 Key Value 数据库用途外,Redis 还提供了 Redis Modules,这是一种通过新功能、命令和数据类型扩展 Redis 的方式。例如使用 RediSearch 模块来扩展向量搜索的功能。

同理的还有 PostgreSQL 的扩展,PostgreSQL 提供使用 extension 的方式来扩展数据库的功能,例如 pgvector 来开启向量搜索的功能。它不仅支持精确和相似性搜索,还支持余弦相似度等相似性测量算法。最重要的是,它是附加在 PostgreSQL 上的,因此可以利用 PostgreSQL 的所有功能,例如 ACID 事务、并发控制、备份和恢复等。还拥有所有的 PostgreSQL 客户端库,因此可以使用任何语言的 PostgreSQL 客户端来访问它。可以减少开发者的学习成本和服务的维护成本。

像笔者的开源项目 ChatFiles 和 VectorHub 目前就暂时使用 pgvector 来实现向量搜索以实现 GPT 文档问答,基于 Supabase 提供的 PostgreSQL + pgvector 服务完成。

总结

本文主要介绍了向量数据库的原理和实现,包括向量数据库的基本概念、相似性搜索算法、相似性测量算法、过滤算法和向量数据库的选型等等。向量数据库是崭新的领域,目前大部分向量数据库公司的估值乘着 AI 和 GPT 的东风从而飞速的增长,但是在实际的业务场景中,目前向量数据库的应用场景还比较少,抛开浮躁的外衣,向量数据库的应用场景还需要开发者们和业务专家们去挖掘。

REF:
向量数据库|一文全面了解向量数据库的基本概念、原理、算法、选型-腾讯云开发者社区-腾讯云
解读向量数据库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2869056.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

3.2_5 内存映射文件

文章目录 3.2_5 内存映射文件(一)传统的文件访问方式(二)内存映射文件(Memory-Mapped Files) 总结 3.2_5 内存映射文件 (一)传统的文件访问方式 磁盘的存储是以块为单位的&#xff0…

2024年腾讯云4核8G12M服务器可容纳多大访问量?

腾讯云轻量4核8G12M服务器配置446元一年,646元12个月,腾讯云轻量应用服务器具有100%CPU性能,系统盘为180GB SSD盘,12M带宽下载速度1536KB/秒,月流量2000GB,折合每天66.6GB流量,超出月流量包的流…

【JVM】GCRoot

GC root原理 通过对枚举GCroot对象做引用可达性分析,即从GC root对象开始,向下搜索,形成的路径称之为 引用链。如果一个对象到GC roots对象没有任何引用,没有形成引用链,那么该对象等待GC回收。 可以作为GC Roots的对…

Jacobian matrix雅可比矩阵

参考链接 https://www.youtube.com/watch?vwUF-lyyWpUc&listPLEZWS2fT1672lJI7FT5OXHJU6cTgkSzV2&index6

python二级备考(2)-简单应用题

第1套 使用turtle库的turtle. right()函数和turtle.fd()函数绘制一个菱形,边长为200像素,4个内角度数为2个60度和2个120度 键盘输入一组人员的姓名、性别、年龄等信息,信息间采用空格分隔,每人一行,空行回车结束录入&a…

电子供应链的未来:电子元器件采购商城的洞察

电子供应链的未来将受到数字化技术、智能化制造和全球化贸易等趋势的深刻影响。在这一背景下,电子元器件采购商城将发挥越来越重要的作用,并提供以下洞察: 数字化转型: 电子元器件采购商城将更加注重数字化转型,通过引…

使用数字人SadTalker创建免费AI主播

很有趣的GitHub项目SadTalker,它能够将一张图片跟一段音频合成一段视频,看起来毫无违和感,如果不仔细看,甚至很难辨别真假,预计未来某一天,一大波网红即将失业。 虽然这个项目目前的主要研究方向还是基于c…

【软考高项】七、信息技术发展之存储、数据库、信息安全

1、存储知识点 存储类型分:封闭式(小型机)和开放式(服务器) 其中开放式又分内置和外挂存储(直连DAS、网格FAS(NAS/SAN)) 2、数据库知识点 数据结构模型: …

2核4G云服务器能支持多少人同时访问?性能测评来了

腾讯云轻量2核4G5M带宽服务器支持多少人在线访问?5M带宽下载速度峰值可达640KB/秒,阿腾云以搭建网站为例,假设优化后平均大小为60KB,则5M带宽可支撑10个用户同时在1秒内打开网站,并发数为10,经阿腾云测试&a…

Java中为什么只有值传递?

Java中为什么只有值传递? 对于对象参数而言,实际参数传递给形式参数的只是一个内存地址,让形式参数也指向实际参数所指向的地址,传递的值的内容是对象的引用。 为什么会是这样?让我慢慢为你讲解。 对于Java的传递类…

引领国产洗碗机全面反超,是时候重新认识方太了

文 | 智能相对论 作者 | 佘凯文 2024AWE如期而至,方太作为全球领先的高端厨电专业制造商与创新引领者参与其中,并在开幕当天召开了以“Hi-tech,Hi life”为主题的2024春季新品发布会。 发布会上,方太公布了由国家工业信息安全发…

实验室管理系统 |基于springboot框架+ Mysql+JSP技术+Tomcat的实验室管理系统 设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 用户后台功能模块 用户后台管理 管理员功能登录前台功能效果图 系统功能设计 数据库E-R图设计 lunw…

【01】htmlcssgit

01-前端干货-html&css 防脱发神器 一图胜千言 使用border-box控制尺寸更加直观,因此,很多网站都会加入下面的代码 * {margin: 0;padding: 0;box-sizing: border-box; }颜色的 alpha 通道 颜色的 alpha 通道标识了色彩的透明度,它是一个 0~1 之间的取值,0 标识完全…

创业新手看过来!四招助你开启成功之旅

如果你每个月的薪资仅有几千块,还背负着债务的重担,家中的老少都期盼着你为他们撑起一片天,那么,你每日都可能为了如何打破这一困境而焦虑不安。不过,请稍安勿躁,今天我将为你提供四个建议,或许…

【C语言】浮点型在内存中的存储

文章目录 例题引入剖析原因浮点型的二进制转换(M)正负号之分(S)科学记数法(E)关于 S E M 在内存中的存储存取浮点型时的情况讨论 例题解析整形存储为浮点型并输出浮点型存储为整形并输出 在我的上一篇博客中…

[De1CTF 2019]SSRF Me ---不会编程的崽

这个题更偏向于代码审计。耐住性子慢慢理解,还是挺简单的。 很直接哦,就给源码。这么看不好看,得去pycharm里修正一下格式 #放在pycharm里CtrlAltL将代码格式化一下 1 #! /usr/bin/env python2 #encodingutf-83 from flask import Flask4 fr…

浅谈如何自我实现一个消息队列服务器(1)——需求分析

文章目录 一、什么是消息队列?二、当下主流的消息队列(MQ)三、自我实现一个消息队列服务器的前期准备——需求分析3.1 核心概念3.2 broker server 核心概念3.2.1、虚拟主机(Virtual Host)3.2.2、交换机(Exchange)3.2.2…

2024年【电工(初级)】考试资料及电工(初级)实操考试视频

题库来源:安全生产模拟考试一点通公众号小程序 电工(初级)考试资料根据新电工(初级)考试大纲要求,安全生产模拟考试一点通将电工(初级)模拟考试试题进行汇编,组成一套电…

springboot项目学习-瑞吉外卖(1)

第一天任务如下: 建立基本架构完成登录、退出功能 注意:本博客没有使用网上教程里的mybatis-plus,使用的是mybatis;数据库连接池也没有使用教程里的druid,使用的是spring自带的连接池 基本架构 common包:存…

【代码】求出指定图片的平均RGB颜色值

import cv2求出指定图片的平均颜色值# 读取图片 image cv2.imread(D:\\Desktop\\0001.png)# 计算平均颜色 # cv2.mean()函数会返回图像所有通道的平均值 # 这里的平均值是按通道分别计算的,返回值是一个包含每个通道平均值的元组 average_color_per_channel cv2.m…